, Volume 27, Issue 4, pp 491-499
Date: 30 Apr 2010

Identification of novel QTL contributing resistance to aflatoxin accumulation in maize

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The toxic metabolic product aflatoxin produced by the opportunistic fungus Aspergillus flavus (Link:Fr) in maize (Zea mays L.) can cause disease and economic harm when levels exceed very minute quantities. The selection of resistant germplasm has great potential to reduce the problem, but the highly quantitative nature of the trait makes this a difficult endeavor. The identification of aflatoxin accumulation resistance quantitative trait loci (QTL) from resistant donor lines and the discovery of linked markers could speed this task. To identify marker–trait associations for marker-assisted breeding, a genetic mapping population of F2:3 families was developed from Mp715, a maize inbred line resistant to aflatoxin accumulation, and T173, a susceptible, southern-adapted maize inbred line. QTL, some with large phenotypic effects, were identified in multiple years on chromosomes 1, 3, 5, and 10, and smaller QTL identified in only 1 year were found on chromosomes 4 and 9. The phenotypic effect of each QTL ranged from 2.7 to 18.5%, and models created with multiple QTL could explain up to 45.7% of the phenotypic variation across years, indicating that the variation associated with the trait can be manipulated using molecular markers.