Skip to main content
Log in

Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In this study, we developed 359 detection primers for single nucleotide polymorphisms (SNPs) previously discovered within intron sequences of wheat genes and used them to evaluate SNP polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.18 among 20 US elite wheat cultivars, representing seven market classes. This value increased to 0.23 when SNPs were pre-selected for polymorphisms among a diverse set of 13 hexaploid wheat accessions (excluding synthetic wheats) used in the wheat SNP discovery project (http://wheat.pw.usda.gov/SNP). PIC values for SNP markers in the D genome were approximately half of those for the A and B genomes. D genome SNPs also showed a larger PIC reduction relative to the other genomes (P < 0.05) when US cultivars were compared with the more diverse set of 13 wheat accessions. Within those accessions, D genome SNPs show a higher proportion of alleles with low minor allele frequencies (<0.125) than found in the other two genomes. These data suggest that the reduction of PIC values in the D genome was caused by differential loss of low frequency alleles during the population size bottleneck that accompanied the development of modern commercial cultivars. Additional SNP discovery efforts targeted to the D genome in elite wheat germplasm will likely be required to offset the lower diversity of this genome. With increasing SNP discovery projects and the development of high-throughput SNP assay technologies, it is anticipated that SNP markers will play an increasingly important role in wheat genetics and breeding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

FP:

Fluorescence polarization

HRS:

Hard red spring

HWS:

Hard white spring

HRW:

Hard red winter

HWW:

Hard White Winter

PIC:

Polymorphism information content

SSR:

Simple sequence repeat

SNP:

Single nucleotide polymorphism

SRW:

Soft red winter

SWS:

Soft white spring

SWW:

Soft white winter

References

  • Batley J, Barker G, O’Sullivan J, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertion/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91. doi:10.1104/pp.102.019422

    Article  PubMed  CAS  Google Scholar 

  • Blake NK, Sherman JD, Dvorak J, Talbert LE (2004) Genome-specific primer sets for starch biosynthesis genes in wheat. Theor Appl Genet 109:1295–1302. doi:10.1007/s00122-004-1743-4

    Article  PubMed  CAS  Google Scholar 

  • Brookes A (1999) The essence of SNPs. Gene 234:177–186. doi:10.1016/S0378-1119(99)00219-X

    Article  PubMed  CAS  Google Scholar 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256. doi:10.1016/S0169-5347(03)00018-1

    Article  Google Scholar 

  • Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P et al (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947. doi:10.1534/genetics.103.016303

    Article  PubMed  CAS  Google Scholar 

  • Cardon LR, Abecasis GR (2003) Using haplotype blocks to map human complex trait loci. Trends Genet 19:135–140. doi:10.1016/S0168-9525(03)00022-2

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030. doi:10.2135/cropsci2006.06.0434

    Article  CAS  Google Scholar 

  • Chen X, Levine L, Kwok P-Y (1999) Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 9:492–498

    PubMed  CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19. doi:10.1186/1471-2156-3-19

    Article  PubMed  Google Scholar 

  • Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E et al (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207. doi:10.1038/13833

    Article  PubMed  CAS  Google Scholar 

  • Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV et al (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696. doi:10.1534/genetics.107.070821

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866. doi:10.1126/science.1143986

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the aegilops-triticum alliance. Genetics 171:323–332. doi:10.1534/genetics.105.041632

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL (1998) Genetic evidence on the origin of Triticum aestivum L. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, Syria, pp 235–251

    Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies Indica and Japonica genome alignments. Genome Res 14:1812–1819. doi:10.1101/gr.2479404

    Article  PubMed  CAS  Google Scholar 

  • Hayes P, Szucs P (2006) Disequilibrium and association in barley: Thinking outside the glass. Proc Natl Acad Sci USA 103:18385–18386. doi:10.1073/pnas.0609405103

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak L (1997) The use of a genetic map of biallelic markers in linkage studies. Nat Genet 17:21–24. doi:10.1038/ng0997-21

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  PubMed  CAS  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N et al (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171. doi:10.1093/dnares/9.5.163

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphism in crop genetics. Curr Opin Plant Biol 5:94–100. doi:10.1016/S1369-5266(02)00240-6

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D et al (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139. doi:10.1139/G06-067

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527. doi:10.1007/s00438-005-0046-z

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661. doi:10.1073/pnas.0606133103

    Article  PubMed  CAS  Google Scholar 

  • Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G et al (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Kulosa D, Soerensen TR, Möhring S, Heine M, Durstewitz G, Polley A, Weber E, Jamsari, Lein J, Hohmann U, Tahiro E, Weisshaar B, Schulz B, Koch G, Jung C, Ganal M (2007) Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet doi: 10.1007/s00122-007-0591-4

  • Sears ER (1954) The aneuploids of common wheat. Mo Agric Exp Stn Res Bull 572:1–59

    Google Scholar 

  • Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437. doi:10.1139/g03-027

    Article  Google Scholar 

  • Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41:402–407. doi:10.1139/gen-41-3-402

    Article  CAS  Google Scholar 

  • Thuillet AC, Bru D, David J, Roumet P, Santoni S, Sourdille P et al (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp. durum desf. Mol Biol Evol 19:122–125

    PubMed  CAS  Google Scholar 

  • Vroh Bi I, McMullen MD, Sanchez-Villeda H, Schroeder S, Gardiner J, Polacco M et al (2006) Single nucleotide polymorphism and insertion-deletion for genetic markers and anchoring the maize fingerprint contig physical map. Crop Sci 46:12–21. doi:10.2135/cropsci2004.0706

    Article  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associate, Inc., Sunderlands

    Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, van Tassell CP, Matukumalli LK, Grimm DR et al (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the funds from the U.S. Department of Agriculture, Cooperative State Research, Education and Extension Service, Coordinated Agricultural Project grant number 2006-55606-16629 and NSF Grant No. DBI-0321757. We thank Dr. Jan Dvorak for facilitating early access to the SNP data generated by the NSF project and for his useful suggestions and ideas and to Iago Lowe for his thorough revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiaoman Chao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, S., Zhang, W., Akhunov, E. et al. Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breeding 23, 23–33 (2009). https://doi.org/10.1007/s11032-008-9210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9210-6

Keywords

Navigation