Skip to main content
Log in

Buckling delamination of a rectangular sandwich plate containing inner cracks under biaxial loading

  • Published:
Mechanics of Composite Materials Aims and scope

Buckling delamination around interface cracks in a rectangular sandwich plate with isotropic, homogeneous layers under biaxial loading is investigated. The plate contains two embedded rectangular interface cracks whose edges have insignificant initial imperfections. The evolution of the imperfections is examined by utilizing the three-dimensional geometrically nonlinear equations of elasticity theory. To solve the corresponding nonlinear problems, the boundary perturbation method and the 3D FEM is employed. According to an initial imperfection criterion, the critical forces are determined. Numerical results are presented for the case where the material of the core layer is stiffer than those of face layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. D. Akbarov, N. Yahnioglu, and A. Tekin, “3D FEM analyses of the buckling delamination in a rectangular plate containing rectangular interface cracks and made from elastic and viscoelastic materials,” CMES-Computer Modeling in Engineering Sci., 64, No. 2, 147–185 (2010).

    Google Scholar 

  2. S. D. Akbarov, N. Yahnioglu, and E. E. Karatas, “Buckling delamination of a rectangular plate containing a rectangular crack and made from elastic and viscoelastic composite materials,” Int. J. of Solids and Structures, 47, 3426–3434 (2010).

    Article  CAS  Google Scholar 

  3. A. N. Guz and V. M. Nazarenko, “Theory of near-surface delamination of composite materials under compression along a macrocrack,” Mech. Comp. Mater., 21, No. 5, 826–833 (1985a).

    Google Scholar 

  4. A. N. Guz and V. M. Nazarenko, “Symmetric failure of a half-space with a penny-shaped crack in compression,” Theor. Appl. Fract. Mech., 3, 233–245 (1985).

    Article  Google Scholar 

  5. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Berlin Heidelberg, Springer-Verlag, (1999).

    Book  Google Scholar 

  6. A. N. Guz, Fundamentals of the Compressive Fracture Mechanics of Composites: Fracture in the Structure of Materials, Vol. 1. Litera, Kiev (in Russian) (2008).

  7. A. N. Guz, Fundamentals of the Compressive Fracture Mechanics of Composites: Related Mechanics of Fracture, 2, Litera, Kiev (in Russian) (2008).

  8. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Fracture of a body with a periodic set of coaxial cracks under forces directed along them: an axisymmetric problem,” Int. Appl. Mech., 45, No. 2, 111–124 (2009).

    Article  Google Scholar 

  9. S. D. Akbarov, “On the three dimensional stability loss problems of elements of constructions fabricated from viscoelastic composite materials,” Mech. Compos. Mater., 34, No. 6, 537–544 (1998).

    Article  Google Scholar 

  10. S. D. Akbarov, “Three-dimensional instability problems for viscoelastic composite materials and structural members,” Int. Appl. Mech. 43, No. 10, 1069–1089 (2007).

    Article  Google Scholar 

  11. S. D. Akbarov, T. Sisman, and N. Yahnioglu, “On the fracture of unidirectional composites in compression,” Int. J. Eng. Sci., 35, Nos. 12/13, 1115–1136 (1997).

    Article  Google Scholar 

  12. S. D. Akbarov and N. Yahnioglu, “A method for investigation of the general theory of stability problems of structural elements fabricated from viscoelastic composite materials,” Compos. Part B-Eng., 32, No. 5, 475–482 (2001).

    Article  Google Scholar 

  13. S. D. Akbarov and A. N. Guz, Mechanics of Curved Composites. Kluwer Academic Publishers, Dordrecht/Boston/London (2000)

    Book  Google Scholar 

  14. S. D. Akbarov and O. G. Rzayev, “On the buckling of elastic and viscoelastic composite circular thick plates with a penny-shaped crack,” Eur. J. Mech. A-Solid, 21, No. 2, 269–279 (2002).

    Article  Google Scholar 

  15. S. D. Akbarov and O. G. Rzayev, “Delamination of unidirectional viscoelastic composite materials,” Mech. Compos. Mater., 38, No. 1, 17–24 (2002).

    Article  Google Scholar 

  16. S. D. Akbarov and O. G. Rzayev, “On the delamination of a viscoelastic composite circular plate,” Int. Appl. Mech., 39, No. 3, 368–374 (2003).

    Article  Google Scholar 

  17. O. G. Rzayev and S. D. Akbarov, “Local buckling of elastic and viscoelastic coatings around a penny-shaped interface crack,” Int. J. Eng. Sci., 40, 1435–1451(2002).

    Article  Google Scholar 

  18. O. G. Rzayev, “Local buckling around an interfacial crack in a viscoelastic sandwich plate,” Mech. Compos. Mater., 38, No. 2, 233–242 (2002).

    Article  Google Scholar 

  19. S. D. Akbarov and N. Yahnioglu, “Delamination buckling of a rectangular orthotropic composite plate containing a band crack,” Mechanics of Composite Materials, 46, No. 5, 493–504 (2010).

    Article  Google Scholar 

  20. S. D. Akbarov, N. Yahnioglu, and O. G. Rzayev, “On the influence of singular-type finite elements to the critical force in studying the buckling of a circular plate with a crack,” Int. Appl. Mech., 43, No. 9, 1048–1056 (2007).

    Article  Google Scholar 

  21. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Methods: Basic Formulation and Linear Problems, Vol. 1, 4th ed., Mc Graw-Hill Book Company, Oxford (1989).

  22. A. G. Evans and J. W. Hutchinson, “The termomechanical integrity of thin multilayers,” Acta Metal. Mater., 43, 2507–2530 (1995).

    Article  CAS  Google Scholar 

  23. F. Gioia and M. Ortiz, “Delamination of compressed thin films,” Adv. Appl. Mech., 33, 120–192 (1997).

    Google Scholar 

  24. J. W. Hutchinson and Z. Suo, “Mixed-mode cracking in layered materials,” Adv. Appl. Mech., 29, 63–191 (1992).

    Article  Google Scholar 

  25. K. F. Nilsson and A. E. Giannakopoulos, “A finite element analysis of configurational stability and finite growth of buckling-driven delamination,” J. Mech. Phys. Solids, 43, 1983–2021 (1995).

    Article  Google Scholar 

  26. M. D. Thouless, H. M. Jensen, and E. G. Liniger, “Delamination from edge flaws,” Proc. Royal Soc. London A447, 271–279 (1994).

    Google Scholar 

  27. J. S. Wang and A. G. Evans, “Measurement and analysis of buckling and buckle propagation in compressed oxide layers on superally substrates,” Acta Mater., 46, 4993–5505 (1998).

    Article  CAS  Google Scholar 

  28. A. S. Volmir, Stability of Deformable Systems, Nauka, Moscow (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Akbarov.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 49, No. 5, pp. 801-820, September-October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarov, S.D., Yahnioglu, N. & Tekin, A. Buckling delamination of a rectangular sandwich plate containing inner cracks under biaxial loading. Mech Compos Mater 49, 537–550 (2013). https://doi.org/10.1007/s11029-013-9370-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9370-2

Keywords

Navigation