Skip to main content

Advertisement

Log in

Simulating climate change impacts and potential adaptations on rice yields in the Sichuan Basin, China

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Rice (Oryza) is a staple food in China, and rice yield is inherently sensitive to climate change. It is of great regional and global importance to understand how and to what degree climate change will impact rice yields and to determine the adaptation options effectiveness for mitigating possible adverse impacts or for taking advantage of beneficial changes. The objectives of this study are to assess the climate change impact, the carbon dioxide (CO2) fertilization effect, and the adaptation strategy effectiveness on rice yields during future periods (2011–2099) under the newly released Representative Concentration Pathway (RCP) 4.5 scenario in the Sichuan Basin, one of the most important rice production areas of China. For this purpose, the Crop Estimation through Resource and Environment Synthesis (CERES)-Rice model was applied to conduct simulation, based on high-quality meteorological, soil and agricultural experimental data. The modeling results indicated a continuing rice reduction in the future periods. Compared to that without incorporating of increased CO2 concentration, a CO2 fertilization effect could mitigate but still not totally offset the negative climate change impacts on rice yields. Three adaptive measures, including advancing planting dates, switching to current high temperature tolerant varieties, and breeding new varieties, could effectively offset the negative climate change impacts with various degrees. Our results will not only contribute to inform regional future agricultural adaptation decisions in the Sichuan Basin but also gain insight into the mechanism of regional rice yield response to global climate change and the effectiveness of widely practiced global thereby assisting with appropriate adaptive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Armstrong R A, Hilton A C (2010) Stepwise multiple regression. In: Armstrong R A, Hilton A C (eds) Statistical Analysis in Microbiology: Statnotes, 1st edn. Hoboken, NJ

  • Asseng S (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3:827–832

    Article  Google Scholar 

  • Babel MS, Agarwal A, Swain DK et al (2011) Evaluation of climate change impacts and adaptation measures for rice cultivation in Northeast Thailand. Clim Res 46:137–146

    Article  Google Scholar 

  • Bakker MM, Govers G, Ewert F et al (2005) Variability in regional wheat yields as a function of climate, soil and economic variables: assessing the risk of confounding. Agric Ecosyst Environ 110:195–209

    Article  Google Scholar 

  • Bazzaz FA, Garbutt K, Reekie EG et al (1989) Using growth analysis to interpret competition between a C3 and a C4 annual under ambient and elevated CO2. Oecologia 79:223–235

    Article  Google Scholar 

  • Bocchiola D (2015) Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy. Agric Syst 139:223–237

    Article  Google Scholar 

  • Buan RD, Maglinao AR, Evangelista PP et al (1996) Vulnerability of rice and corn to climate change in the Philippines. Water Air Soil Pollut 92:41–51

    Google Scholar 

  • Byjesh K, Kumar SN, Aggarwal PK (2010) Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig Adapt Strateg Glob Chang 15:413–431

    Article  Google Scholar 

  • Challinor AJ, Ewert F, Arnold S et al (2009) Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot 60:2775–2789

    Article  Google Scholar 

  • Challinor AJ, Watson J, Lobell DB et al (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291

    Article  Google Scholar 

  • Challinor AJ, Wheeler TR (2008) Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agric For Meteorol 148:1062–1077

    Article  Google Scholar 

  • Challinor AJ, Wheeler TR, Craufurd PQ et al (2007) Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric Ecosyst Environ 119:190–204

    Article  Google Scholar 

  • Challinor AJ, Wheeler TR, Craufurd PQ et al (2004) Design and optimisation of a large-area process-based model for annual crops. Agric For Meteorol 124:99–120

    Article  Google Scholar 

  • Chartzoulakis K, Psarras G (2005) Global change effects on crop photosynthesis and production in Mediterranean: the case of Crete, Greece. Agric Ecosyst Environ 106:147–157

    Article  Google Scholar 

  • Cheng S, Li J (2007) Contemperary rice in China. Beijing, China

    Google Scholar 

  • China Meteorological Administration (1993) Agro-meteorological observation standard. Beijing, China

  • Collins M (2007) Ensembles and probabilities: a new era in the prediction of climate change. Phil Trans R Soc A 365:1957–1970

    Article  Google Scholar 

  • Deryng D, Sacks WJ, Barford CC et al (2011) Simulating the effects of climate and agricultural management practices on global crop yield. Glob Biogeochem Cycles 25:1–18

    Article  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P et al (2007) Food, fibre and forest products coordinating. In: Parry ML, Canziani OF, Palutikof JP (eds) Climate change 2007: impacts, adaptation and vulnerability, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ewert F (2004) Modelling plant responses to elevated CO2: how important is leaf area index? Ann Bot 93:619–627

    Article  Google Scholar 

  • Ewert F, Rounsevell MDA, Reginster I et al (2005) Future scenarios of European agricultural land use I. Estimating changes in crop productivity. Agric Ecosyst Environ 107:101–116

    Article  Google Scholar 

  • Fang X, Zhang W, Zhang L (1998) The land use arrangement of China in the Holocene megathermal period and its significance. J Nat Resour 13:16–22

    Google Scholar 

  • Fredeen AL, Sage RF (1999) Temperature and humidity effects on branchlet gas-exchange in white spruce: an explanation for the increase in transpiration with branchlet temperature. Trees 14:161–168

    Article  Google Scholar 

  • Gitay H, Brown S, Easterling W et al (2001) Ecosystems and their goods and services. In: Fischlin Diaz S (ed) Climate change 2001: impacts, adaptation, and vulnerability, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hansen JW, Jones JW (2000) Scaling-up crop models for climate variability application. Agric Syst 65:43–72

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA et al (2011) Climate impacts on agriculture implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • He J, Jones JW, Graham WD et al (2010) Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric Syst 103:256–264

    Article  Google Scholar 

  • Hempel S, Frieler K, Warszawski L et al (2013) A trend-preserving bias correction-the ISI-MIP approach. Earth Syst Dyn 4:219–236

    Article  Google Scholar 

  • Hoogenboom G, Jones J W, Porter C et al (eds) (2010) Decision Support System for Agrotechnology Transfer Version 4.5. Volume 1: Overview. Honolulu, HI

  • Hoogenboom G, Jones JW, Traore PCS et al (2012) Experiments and data for model evaluation and application. In: Kihara J, Fatondji D, Hoogenboom G et al (eds) Improving soil fertility recommendations in Africa using the decision support system for agrotechnology transfer (DSSAT), 1st edn. Springer Science, Business Media, Dordrecht

    Google Scholar 

  • Houghton J T, Ding Y, Griggs D J et al (2001) The scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Climate Change 525-582

  • Hunt LA, Boote KJ (1998) Data for model operation, calibration, and evaluation. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production, 1st edn. Kluwer Academic Publishers, Kluwer

    Google Scholar 

  • Hunt LA, White JW, Hoogenboom G (2001) Agronomic data: advances in documentation and protocols for exchange and use. Agric Syst 7:477–492

    Article  Google Scholar 

  • IPCC (2000) Emissions scenarios: a special report working group III of the Intergovermental Panel on Climate Change. England, Cambridge

    Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation, and vulnerability. England, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. England, Cambridge

    Google Scholar 

  • IPCC, Stocker T, Dahe Q et al (2013) Climate change 2013: the physical science basis. Cambridge, England

    Google Scholar 

  • Jagadish SVK, Murty MVR, Quick WP (2014) Rice responses to rising temperatures: challenges, perspectives and future directions. Plant Cell Environ 38:1686–1698

    Article  Google Scholar 

  • Jiang M, Jin Z, Shi C et al (2013) Response of rice production based on self-adaption to climate change in Fujian province. Acta Agron Sin 38:2246–2257

    Article  Google Scholar 

  • Jin Z, Ge D, Chen H et al (1995) Effects of climate change on rice production and strategies for adaptation in Southern China. In: Rosenzweig C, Allen LH, Harper LA (eds) Climate change and agriculture: analysis of potential international impacts, 1st edn. American Society of Agronomy, Madison

    Google Scholar 

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  • Jones JW, Hoogenboom G, Porter H et al (2003) The DSSAT cropping system model. Eur J Agron 18:235–265

    Article  Google Scholar 

  • Kapetanaki G, Rosenzweig C (1997) Impact of climate change on maize yield in central and northern Greece: a simulation study with ceres-maize. Mitig Adapt Strateg Glob Chang 1:251–271

    Article  Google Scholar 

  • Kim H-Y, Ko J, Kang S et al (2013) Impacts of climate change on paddy rice yield in a temperate climate. Glob Chang Biol 19:548–562

    Article  Google Scholar 

  • Krishnan P, Swain DK, Bhaskar BC et al (2007) Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric Ecosyst Environ 122:233–242

    Article  Google Scholar 

  • Lansigan FP, Santos WLdl, Coladilla JO (2000) Agronomic impacts of climate variability on rice production in the Philippines. Agric Ecosyst Environ 82:129–137

    Article  Google Scholar 

  • Lashkari A, Alizadeh A, Rezaei EE et al (2011) Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study. Mitig Adapt Strateg Glob Chang 17:1–16

    Article  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  Google Scholar 

  • Lin E, Xiong W, Ju H et al (2005) Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos Trans R Soc B 360:2149–2154

    Article  Google Scholar 

  • Liu G, Xie Y, Gao X et al (2008) Sensitivity analysis on parameters of ALMANAC crop model. Chin J Agrometeorol 29:259–263

    Google Scholar 

  • Liu S, Wang Y, Miao Q et al (2010) Variation characteristics of thermal resources in northeast China in recent 50 years. J Appl Meteorol Sci 21:267–278

    Google Scholar 

  • Lobell DB, Field CB, Cahill KN et al (2006) Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric For Meteorol 141:208–218

    Article  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  Google Scholar 

  • Mahmood R, Legates DR, Meo M (2004) The role of soil water availability in potential rainfed rice productivity in Bangladesh: applications of the CERES-Rice model. Appl Geogr 24:139–159

    Article  Google Scholar 

  • Masui T, Matsumoto K, Hijioka Y et al (2011) An emission pathway for stabilization at 6 Wm−2 radiative forcing. Clim Chang 109:59–76

    Article  Google Scholar 

  • Masutomi Y, Takahashi K, Harasawa H et al (2009) Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric Ecosyst Environ 131:281–291

    Article  Google Scholar 

  • Mati BM (2000) The influence of climate change on maize production in the semi-humid–semi-arid areas of Kenya. J Arid Environ 46:333–344

    Article  Google Scholar 

  • Matthews R, Wassmann R (2003) Modelling the impacts of climate change and methane emission reductions on rice production: a review. Eur J Agron 19:573–598

    Article  Google Scholar 

  • Meng N, Sichuan Provincial Agriculture Department, Sichuan Provincial Soil Survey Office (1994) Sichuan soil genus records. Chengdu, China

  • Moore FC, Lobell DB (2014) Adaptation potential of European agriculture in response to climate change. Nat Clim Chang 4:610–614

    Article  Google Scholar 

  • Moradi R, Koocheki A, Mahallati MN (2013) Adaptation of maize to climate change impacts in Iran. Mitig Adapt Strateg Glob Chang 19:1223–1238

    Article  Google Scholar 

  • Moriondo M, Bindi M, Kundzewicz ZW et al (2010) Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Chang 15:657–679

    Article  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational. Technometrics 33:161–174

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Piao S, Ciais P, Huang Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    Article  Google Scholar 

  • Porter JR, Xie L, Challinor AJ et al (2014) Food security and food production systems. In: Field CB, Barros VR, Dokken DJ (eds) Climate change 2014: impacts, adaptation, and vulnerability, 1st edn. Cambridge University Press, Cambridge, and New York

    Google Scholar 

  • Raj RB, Cassandra S, Walter LF (2014) Effectiveness of the local adaptation plan of action to support climate change adaptation in Nepal. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-014-9610-3

    Google Scholar 

  • Rani BA, Maragatham N (2013) Effect of elevated temperature on rice phenology and yield. Indian J Sci Technol 6:5095–5097

    Google Scholar 

  • Reilly J, Baethgen W, Chege FE et al (1996) Agriculture in a changing climate: impacts and adaptation. In: Watson RT, Zinyowera MC, Moss RH (eds) Climate change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses, 1st edn. Cambridge university press, Cambridge

    Google Scholar 

  • Riahi K, Rao S, Krey V et al (2011) RCP8.5: a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57

    Article  Google Scholar 

  • Rinaldia M, Losavioa N, Flagellab Z (2003) Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy. Agric Syst 78:17–30

    Article  Google Scholar 

  • Ritchie JT, Singh U, Godwin DC et al (1998) Cereal growth, development and yield. In: Tsuji GY, Hoogenboom G, Thornto PK (eds) Understanding options for agricultural production, 1st edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Román-Paoli E, Welch SM, Vanderlip RL (2000) Comparing genetic coefficient estimation methods using the CERES-Maize model. Agric Syst 65:29–41

    Article  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS 111:3268–3273

    Article  Google Scholar 

  • Rosenzweig C, Hillel D (1998) Climate change and the global harvest. New York, America

  • Rosenzweig C, Jones JW, Hatfield JL et al (2013) The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182

    Article  Google Scholar 

  • Saseendran SA, Singh KK, Rathore LS et al (2000) Effects of climate change on rice production in the tropical humid climate of Kerala, India. Clim Chang 44:495–514

    Article  Google Scholar 

  • Shao J, Li Y, Ni J (2012) The characteristics of temperature variability with terrain, latitude and longitude in Sichuan-Chongqing region. J Geogr Sci 22:223–244

    Article  Google Scholar 

  • Shi P, Tang L, Lin C et al (2015) Modeling the effects of post-anthesis heat stress on rice phenology. Field Crop Res 177:26–36

    Article  Google Scholar 

  • Singh P, Nedumaran S, Ntare BR et al (2013) Potential benefits of drought and heat tolerance in groundnut for adaptation to climate change in India and West Africa. Mitig Adapt Strateg Glob Chang 19:509–529

    Article  Google Scholar 

  • Srivastava AK, Gaiser T, Ewert F (2015) Climate change impact and potential adaptation strategies under alternate climate scenarios for yam production in the sub-humid savannah zone of West Africa. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-015-9639-y

    Google Scholar 

  • Sudharsan D, Adinarayana J, Reddy DR et al (2012) Evaluation of weather-based rice yield models in India. Int J Biometeorol 57:107–123

    Article  Google Scholar 

  • Tao F, Hayashi Y, Zhang Z et al (2008) Global warming, rice production, and water use in China: developing a probabilistic assessment. Agric For Meteorol 148:94–110

    Article  Google Scholar 

  • Tao F, Yokozawa M, Xu Y et al (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol 138:82–92

    Article  Google Scholar 

  • Tao F, Zhang S, Zhang Z et al (2014) Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Glob Chang Biol 20:3686–3699

    Article  Google Scholar 

  • Tao F, Zhang Z (2010) Adaptation of maize production to climate change in North China Plain: quantify the relative contributions of adaptation options. Eur J Agron 33:103–116

    Article  Google Scholar 

  • Tao F, Zhang Z, Shi W et al (2013) Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Glob Chang Biol 19:3200–3209

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94

    Article  Google Scholar 

  • Timsina J, Humphreys E (2006) Applications of CERES-Rice and CERES-Wheat in research, policy and climate change studies in Asia: a review. Int J Agric Res 1:202–225

    Article  Google Scholar 

  • Tingem M, Rivington M (2008) Adaptation for crop agriculture to climate change in Cameroon: Turning on the heat. Mitig Adapt Strateg Glob Chang 14:153–168

    Article  Google Scholar 

  • Travasso MI, Magrin GO, Rodriguez GR et al (2009) Climate change impacts on regional maize yields and possible adaptation measures in Argentina. Int J Global Warming 1:201–213

    Article  Google Scholar 

  • Tsuji G Y, Balas S (1993) The IBSNAT decade. Honolulu, America

  • Tsuji G Y, Uehara G, Balas S (eds) (1994) Decision support system for Agrotechnology Transfer Version 3. Volumn 2. Honolulu, Hawaii

  • Tubiello FN, Amthorb JS, Boote KJ et al (2007) Crop response to elevated CO2 and world food supply. Eur J Agron 26:215–223

    Article  Google Scholar 

  • Tubiello FN, Ewert F (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron 18:57–74

    Article  Google Scholar 

  • Vaghefi N, Shamsudin MN, Radam A et al (2013) Modelling the impact of climate change on rice production: an overview. J Appl Sci 13:5649–5660

    Article  Google Scholar 

  • van Ittersum MK, Cassman KG, Grassini P et al (2013) Yield gap analysis with local to global relevance: a review. Field Crop Res 143:4–17

    Article  Google Scholar 

  • van Vuuren DP, Stehfest E, Elzen MGJd et al (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim Chang 109:95–116

    Article  Google Scholar 

  • Wajid A, Rahman MHU, Ahmad A et al (2013) Simulating the interactive impact of nitrogen and promising cultivars on yield of lentil (lens culinaris) using CROPGRO-legume model. Int J Agric Biol 15:1331–1336

    Google Scholar 

  • Wang E, Yu Q, Wu D (2008) Climate, agricultural production and hydrological balance in the North China Plain. Int J Climatol 28:1959–1970

    Article  Google Scholar 

  • Wassmann R, Jagadish SVK, Heuer S et al (2009) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation stragies. Adv Agron 101:59–122

    Article  Google Scholar 

  • Wheeler T, Braun J v (2013) Climate change impacts on global food security. Science 341:508–513

    Article  Google Scholar 

  • White JW, Hoogenboom G,A, Kimball B et al (2011) Methodologies for simulating impacts of climate change on crop production. Field Crop Res 124:357–368

    Article  Google Scholar 

  • Widodo W, Vu JCV, Boote KJ et al (2003) Elevated growth CO2 delays drought stress and accelerates recovery of rice leaf photosynthesis. Environ Exp Bot 49:259–272

    Article  Google Scholar 

  • Wilkens P W, Hoogenboom G, Porter C H et al (eds) (2004) Decision Support System for Agrotechnology Transfer Version 4.0. Volume 2: Data management and analysis tools. Honolulu, HI

  • Wu X, Dai J, Liao F et al (2013) Origin and source of CO2 in natural gas from the eastern Sichuan Basin. Sci China Earth Sci 56:1308–1317

    Article  Google Scholar 

  • Xie X, Li B, Li Y et al (2009) High temperature harm at flowering in Yangtze River Basin in recent 55 years. Jiangsu J Agric Sci 25:28–32

    Google Scholar 

  • Xiong W, Conway D, Holman I et al (2008) Evaluation of CERES-Wheat simulation of wheat production in China. Agron J 100:1720

    Article  Google Scholar 

  • Xiong W, Conway D, Lin E et al (2009) Potential impacts of climate change and climate variability on China’s rice yield and production. Clim Res 40:23–35

    Article  Google Scholar 

  • Xiong W, Tao F, Xu Y et al (2001) Simulation of rice yields under climate changes in future in China. Chin J Agrometeorol 22:1–5

    Google Scholar 

  • Yao F, Xu Y, Lin E et al (2007) Assessing the impacts of climate change on rice yields in the main rice areas of China. Clim Chang 80:395–409

    Article  Google Scholar 

  • Zhang S, Tao F (2013) Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur J Agron 45:165–176

    Article  Google Scholar 

  • Zhang T, Zhu J, Wassmann R (2010) Responses of rice yields to recent climate change in China: an empirical assessment based on long-term observations at different spatial scales (1981–2005). Agric For Meteorol 150:1128–1137

    Article  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB955403), CAS Strategic Priority Research Program (Grant No. XDA05130701) and Natural Science Foundation of China (Grant No. 41172154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xiang Wu.

Appendix

Appendix

Table 7 The soil characteristics for the Crop Estimation through Resource and Environment Synthesis (CERES)-Rice model inputs in the Sichuan Basin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, CC., Wu, WX., Ge, QS. et al. Simulating climate change impacts and potential adaptations on rice yields in the Sichuan Basin, China. Mitig Adapt Strateg Glob Change 22, 565–594 (2017). https://doi.org/10.1007/s11027-015-9688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-015-9688-2

Keywords

Navigation