Alchourrón, C., Gärdenfors P., & Makinson D. C. (1985). On the logic of theory change: Partial meet contraction and revision functions.

*Journal of Symbolic Logic, 50*(2), 510–530.

MATHCrossRefMathSciNetBlackburn, P., de Rijke, M., & Venema, Y. (2001).

*Modal logic*. New York: Cambridge University Press.

MATHBoella, G., Pigozzi, G., van der Torre, L. (2009). Normative framework for normative system change. In D. Sichman, C. Sierra, & C. Castelfranchi (Eds.), *Proceedings of the 8th international conference on autonomous agents and multiagent systems (AAMAS 2009)*, (pp. 169–176).

Chellas, B. (1980). *Model logic*. Cambridge: Cambridge University Press.

Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision.

*Artificial Intelligence 89*, 1–29.

MATHCrossRefMathSciNetDixon, S., & Wobcke, W. (1993). The implementation of a first-order logic AGM belief revision system. In *Proceedings of the fifth IEEE international conference on tools in artificial intelligence*, (pp. 40–47). IEEE Computer Society Press.

Gabbay, D., Rodrigues, O., & Russo, A. (2008). Belief revision in non-classical logics.

*The Review of Symbolic Logic 1*(3), 267–304.

MATHCrossRefGärdenfors, P., & Makinson, D. C. (1988). Revisions of knowledge systems using epistemic entrenchment. In *The 2nd conference on theoretical aspects of reasoning about knowledge (TARK)* (pp. 83–96).

Goranko, V., & Passy, S. (1992). Using the universal modality: Gains and questions.

*Journal of Logic and Computation 2*, 5–30.

MATHCrossRefMathSciNetGovernatori, G., & Rotolo, A. (2010). Changing legal systems: Legal abrogations and annulments in defeasible logic. *Logic Journal of the IGPL*.

Grove, A. (1988). Two modellings for theory change.

*Journal of Philosophical Logic 17*, 157–170.

MATHCrossRefMathSciNetHaenni, R., Romeyn, J. -W., Wheeler, & G., Williamson, J. (2010). *Probabilistic logic and probabilistic networks. Synthese library*. Dordrecht: Springer.

Hansson, S. O. (1999). A textbook of belief dynamics: Theory change and database updating. Berlin: Kluwer Academic Publishers.

MATHJin, Y., & Thielscher, M. (2007). Iterated belief revision, revised.

*Artificial Intelligence 171*(1), 1–18.

MATHCrossRefMathSciNetJorgensen, J. (1937). Imperatives and logic. *Erkenntnis 7*, 288–296.

Katsuno, H., & Mendelzon, A. (1991). On the difference between updating a knowledge base and revising it. In *The 2nd international conference on the principles of knowledge representation and reasoning (KR 1991)* (pp. 387–394).

Kyburg, H. E. Jr., Teng, C. M., & Wheeler, G. (2007). Conditionals and consequences.

*Journal of Applied Logic 5*(4), 638–650.

MATHCrossRefMathSciNetLevi, I. (2004).

*Mild contraction*. Oxford: Clarendon Press.

CrossRefMakinson, D. C., & van der Torre, L. (2000). Input-output logics.

*Journal of Philosophical Logic 30*(2), 155–185.

CrossRefMakinson, D. C., & van der Torre, L. (2001). Constraints for input/output logics.

*Journal of Philosophical Logic 30*, 155–185.

MATHCrossRefMathSciNetMakinson, D. C., & van der Torre, L. (2007). What is input/output logic? input/output logic, constraints, permissions. In G. Boella, L. van der Torre, & H. Verhagen, (Eds.), *Normative multi-agent systems, number 07122 in Dagstuhl seminar proceedings, Dagstuhl, Germany, 2007*. Internationales Begegnungs und Forschungszentrum für Informatik (IBFI).

Nute, D. (1994). Defeasible logic. In G. Dov, C. Hogger, J. Robinson (Eds.), *Handbook of logic in artificial intelligence and logic programming* (Vol. 3). New York: Oxford University Press.

Pagnucco, M., & Rott, H. (1999). Severe withdrawal—and recovery. *Journal of Philosophical Logic 28*, 501–547. (Re-printed with corrections to publisher’s errors in February 2000).

Poole, D. (1988). A logical framework for default reasoning.

*Artificial Intelligence 36*, 27–47.

MATHCrossRefMathSciNetReiter, R. (1980). A logic for default reasoning.

*Artificial Intelligence 13*, 81–132.

MATHCrossRefMathSciNetRott, H. (2001).

*Change choice and inference*. Oxford: Oxford University Press.

MATHSpohn, W. (1987). Ordinal conditional functions: A dynamic theory of epistemic states. In W. L. Harper, & B. Skyrms, (Eds.), *Causation in decision, belief change and statistics* (Vol. 2, pp. 105–134.). Dordrecht: Reidel.

Stolpe, A. (2010). A theory of permission based on the notion of derogation.

*Journal of Applied Logic 8*, 97–113.

MATHCrossRefMathSciNetvan Ditmarsch, H., van der Hoek, W., B., & Kooi, B. (2008).

*Dynamic Epistemic Logic*. Berlin: Synthese Library, Springer.

MATHWheeler, G. (2010). AGM belief revision in monotone modal logics. In: E. D. Clarke, & A. Voronkov, (Eds.), *International conference on logic for programming, artificial intelligence, and reasoning (LPAR-16) short paper proceedings, Dakar, Senegal, 2010*.