Artzenius, F. (1992). The common cause principle. In D. Hull & K. Okruhlik (Eds.), *PSA Procceding* (Vol. 2, pp. 227–237). East Lansing, MI: PSA.

Cartwright, N. (1989).

*Nature’s capacities and their measurement*. Oxford: Clarendon Press.

Google ScholarCartwright, N. (1999).

*The dappled world*. Cambridge: Cambridge University Press.

MATHGoogle ScholarCartwright, N. (2001). What is wrong with Bayes nets? *The Monist*, 242–264.

Chickering, D. M. (2002). Optimal structure Identification with greedy search.

*Journal of Machine Learning Research, 3*, 507–554.

CrossRefMathSciNetGoogle ScholarCooper, G. (1999). An overview of the representation and discovery of causal relationships using Bayesian networks. In C. Glymour & G. F. Cooper (Eds.),

*Computation, causation, and discovery* (pp. 3–62). Cambridge, MA: MIT Press.

Google ScholarDawid, P. (2002). Influence diagrams for causal modelling and inference.

*International Statistical Review, 70*, 161–189.

MATHCrossRefGoogle ScholarGlymour, C. (1980).

*Theory and evidence*. Princeton: Princeton University Press.

Google ScholarGlymour, C. (2007). Learning the structure of deterministic systems. In A. Gopnik, L. Schulz (Eds.), *Causal learning: psychology, philosophy and computation* (Chap. 14). Oxford University Press.

Hausman, D. M., & Woodward, J. (1999). Independence, invariance and the causal Markov condition.

*British Journal for the Philosophy of Science, 50*, 521–583.

Google ScholarHausman, D. M., & Woodward J. (2004). Manipulation and causal Markov condition.

*Philosophy of Science, 71*, 846–856.

Google ScholarHeckerman, D., Meek, C., & Cooper, G. (1999). An Bayesian approach to causal discovery. In: C. Glymour & G. F. Cooper (Eds.), *Computation, causation, and discovery* (Chap. 4). Cambridge, MA: MIT Press.

Hesslow, G. (1976). Two notes on the probabilistic approach to causality.

*Philosophy of Science, 43*, 290–292.

CrossRefGoogle ScholarHitchcock, C. (2001a). The intransitivity of causation revealed in equations and graphs.

*Journal of Philosophy, 98*, 273–299.

CrossRefMathSciNetGoogle ScholarHitckcock, C. (2001b). A tale of two effects.

*Philosophical Review, 110*, 361–396.

Google ScholarHoover, K. D. (2001).

*Causality in macroeconomics*. Cambridge: Cambridge University Press.

Google ScholarMayo, D. (1996).

*Error and the growth of experimental knowledge*. Chicago: University Of Chicago Press.

Google ScholarMayo, D., & Spanos A. (2004). Methodology in practice: Statistical misspecification testing.

*Philosophy of Science, 71*, 1007–1025.

Google ScholarMcDermott, M. (1995). Redundant causation.

*British Journal for the Philosophy of Science, 40*, 523–544.

CrossRefMathSciNetGoogle ScholarMeek, C. (1995a). Causal inference and causal explanation with background knowledge. In *Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence *(pp. 403–411). Morgan Kaufmann.

Meek, C. (1995b). Strong completeness and faithfulness in Bayesian networks. In *Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence* (pp. 411–418). San Francisco: Morgan Kaufmann.

Pearl, J. (1988).

*Probabilistic reasoning in intelligence systems*. San Mateo, California: Morgan Kaufmann.

Google ScholarPearl, J. (2000).

* Causality: Models, reasoning, and inference*. Cambridge, UK: Cambridge University Press.

MATHGoogle ScholarRamsey, J., Spirtes, P., & Zhang J. (2006). Adjacency-faithfulness and conservative causal inference. In *Proceedings of 22nd Conference on Uncertainty in Artificial Intelligence* (pp. 401–408). Oregon: AUAI Press.

Richardson, T., & Spirtes, P. (2002). Ancestral Markov graphical models.

*Annals of Statistics, 30*(4), 962–1030.

Google ScholarRobins, J. M., Scheines, R., Spirtes, P., & Wasserman, L. (2003). Uniform consistency in causal inference.* Biometrika, 90*(3), 491–515.

Shimizu, S., Hoyer, P., Hyvarinen, A., & Kerminen, A. (2006). A linear non-Gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 2003–2030.

Sober, E. (1987). The principle of the common cause. In J. Fetzer (Ed.),

*Probability and causation: Essays in honor of Wesley Salmon* (pp. 211–28). Dordrecht: Redel.

Google ScholarSpanos, A. (2006). Revisiting the omitted variables argument: Substantive vs. statistical adequacy. *Journal of Economic Methodology* (forthcoming).

Spirtes, P., Glymour, C., & Scheines, R. (1991). An algorithm for fast recovery of sparse causal graphs.

*Social Science Computer Review, 9*, 62–72.

Google ScholarSpirtes, P., Glymour, C., & Scheines R. (1993). *Causation, prediction and search*. New York: Springer-Verlag. (2000, 2nd ed.) Cambridge, MA: MIT Press.

Spohn, W. (2000). Bayesian nets are all there is to causal dependence. In M. C. Galavotti et al. (Eds.), *Stochastic dependence and causality *(pp. 157–172). CSLI Publications.

Steel, D. (2006). Homogeneity, selection, and the faithfulness condition.

*Minds and Machines, 16*, 303–317.

CrossRefMathSciNetGoogle ScholarVerma, T., & Pearl J. (1990). Equivalence and synthesis of causal models. In *Proceedings of 6th Conference on Uncertainty in Artificial Intelligence *(pp. 220–227).

Woodward, J. (1998). Causal independence and faithfulness.

*Multivariate Behavioral Research, 33*, 129–148.

CrossRefGoogle ScholarWoodward, J. (2003).

*Making things happen: A theory of causal explanation*. Oxford and New York: Oxford University Press.

Google ScholarZhang, J. (2006a). Underdetermination of causal hypotheses by statistical data. Technical report, Department of Philosophy, Carnegie Mellon University.

Zhang, J. (2006b). Causal inference and reasoning in causally insufficient systems. PhD dissertation, Department of Philosophy, Carnegie Mellon University. Available at

http://www.hss.caltech.edu/~jiji/dissertation.pdf.

Zhang, J. (2008). Error probabilities for inference of causal directions. *Synthese* (forthcoming)

Zhang, J., & Spirtes P. (2003). Strong faithfulness and uniform consistency in causal inference. In *Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence* (pp. 632–639). Morgan Kaufmann.