, Volume 45, Issue 2, pp 175-185
Date: 09 Jul 2009

Hydromagnetic free convection flow with induced magnetic field effects

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

An exact solution is presented for the hydromagnetic natural convection boundary layer flow past an infinite vertical flat plate under the influence of a transverse magnetic field with magnetic induction effects included. The transformed ordinary differential equations are solved exactly, under physically appropriate boundary conditions. Closed-form expressions are obtained for the non-dimensional velocity (u), non-dimensional induced magnetic field component (B x ) and wall frictional shearing stress i.e. skin friction function (τ x ) as functions of dimensionless transverse coordinate (η), Grashof free convection number (G r ) and the Hartmann number (M). The bulk temperature in the boundary layer (Θ) is also evaluated and shown to be purely a function of M. The Rayleigh flow distribution (R) is derived and found to be a function of both Hartmann number (M) and the buoyant diffusivity parameter (ϑ *). The influence of Grashof number on velocity, induced magnetic field and wall shear stress profiles is computed. The response of Rayleigh flow distribution to Grashof numbers ranging from 2 to 200 is also discussed as is the influence of Hartmann number on the bulk temperature. Rayleigh flow is demonstrated to become stable with respect to the width of the boundary layer region and intensifies with greater magnetic field i.e. larger Hartman number M, for constant buoyant diffusivity parameter ϑ *. The induced magnetic field (B x ), is elevated in the vicinity of the plate surface with a rise in free convection (buoyancy) parameter G r , but is reduced over the central zone of the boundary layer regime. Applications of the study include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid dynamics.