Skip to main content

Advertisement

Log in

Wilson Disease

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Wilson disease (WD) is an autosomal recessive inherited disorder of copper metabolism, resulting in pathological accumulation of copper in many organs and tissues. The hallmarks of the disease are the presence of liver disease, neurologic symptoms, and Kayser–Fleischer corneal rings. The leading neurologic symptoms in WD are dysathria, dyspraxia, ataxia, and Parkinsonian-like extrapyramidal signs. Changes in the basal ganglia in brain magnetic resonance imaging (MRI) are characteristic features of the disease. In presence of liver cirrhosis, some features may resemble hepatic encephalopathy. Symptoms and MRI abnormalities may be fully reversible on treatment with zinc or copper chelators. Improvement can be monitored by serial recording of brain-stem-evoked responses. The basic defect is an impaired traficking of copper in hepatocytes. ATP7B is the gene product of the WD gene located on chromosome 13 and resides in hepatocytes in the trans-Golgi network, transporting copper into the secretory pathway for incorporation into apoceruloplasmin and excretion into the bile. While about 40% of patients preset with neurologic symptoms, little is known about the role of copper and ATP7B in the central nervous system. In some brain areas, like in the pineal gland, ATP7B is expressed and functionally active. Increasing evidence supports an important role for metals in neurobiology. Two proteins related to neurodegeneration are copper-binding proteins (1) the amyloid precursor protein (APP), a protein related to Alzheimer's disease, and (2) the Prion protein, related to Creutzfeldt–Jakob disease. A major source of free-radical production in the brain derives from copper. To prevent metal-mediated oxidative stress, cells have evolved complex metal transport systems. APP is a major regulator of neuronal copper homeostasis and has a copper-binding domain (CuBD). The surface location of this site, structural homology of CuBD to copper chaperones, and the role of APP in neuronal copper homeostasis are consistent with the CuBD acting as a neuronal metallotransporter. There are several copper-containing enzymes in the brain, like dopamine beta hydroxylase or Cu/Zn superoxide dismutase (SOD1). Their function may be altered because of copper overload. WD appears to be associated with a dopaminergic deficit. Mutations in the SOD1gene cause familial amyotrophic lateral sclerosis. Survival of transgenic mice with a mutant SOD1 which fails to incorporate Cu(2+) in its active site was improved by copper depletion. Wilson disease (WD) is an autosomal recessive inherited disorder in which copper pathologically accumulates primarily within the liver and subsequently in the neurologic system and many other organs and tissues. Presence of liver disease, neurologic symptoms, and Kayser–Fleischer corneal rings are the hallmarks of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnham, K.J., McKinstry, W.J., Multhaup, G., Galatis, D., Morton, C.J., Curtain, C.C., Williamson, N.A., White, A.R., Hinds, M.G., Norton, R.S., Beyreuther, K., Masters, C.L., Parker, M.W., and Cappai, R. (2003). Structure of the Alzheimer's disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem. 278:17401–17407.

    PubMed  CAS  Google Scholar 

  • Barthel, H., Hermann, W., Kluge, R., Hesse, S., Collingridge, D.R., Wagner, A., and Sabri, O. (2003). Concordant pre- and postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease. Am. J. Neuroradiol. 24:234–238.

    PubMed  Google Scholar 

  • Bax, R.T., Hassler, A., Luck, W., Hefter, H., Krageloh-Mann, I., Neuhaus, P., and Emmrich, P. (1998). Cerebral manifestation of Wilson's disease successfully treated with liver transplantation. Neurology 51:863–865.

    PubMed  CAS  Google Scholar 

  • Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L., and Bush, A.I. (2001). Treatment with a copper–zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30:665–676.

    PubMed  Google Scholar 

  • Borjigin, J., Payne, A.S., Deng, J., Li, X., Wang, M.M., Ovodenko, B., and Gitlin, J. (1999). A novel pineal night specific ATPase encoded by the Wilson disease gene. J. Neurosci. 19:1018–1026.

    PubMed  CAS  Google Scholar 

  • Brewer, G.J., Johnson, V., Dick, R.D., Kluin, K.J., Fink, J.K., and Brunberg, J.A. (1996). Treatment of Wilson disease with ammonium tetrathiomolybdate. II. Initial therapy in 33 neurologically affected patients and follow-up with zinc therapy. Arch. Neurol. 53:1017–1025.

    PubMed  CAS  Google Scholar 

  • Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R., and Cox, D.W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 5:327–337.

    Article  PubMed  CAS  Google Scholar 

  • Bush, A.I., Masters, C.L., and Tanzi, R.E. (2003). Copper, β-amyloid, and Alzheimer's disease: Tapping a sensitive connection. Proc. Natl. Acad. Sci. USA 100:11193–11194.

    Article  PubMed  CAS  Google Scholar 

  • Culotta, V.C., and Gitlin, J.D. (2001). Disorders of copper transport. In (C.S. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, eds.), The Molecular and Metabolic Basis of Inherited Disease, McGraw-Hill, New York, pp. 3105–3126.

  • Eggers, B., Hermann, W., Barthel, H., Sabri, O., Wagner, A., and Hesse, S. (2003). The degree of depression in Hamilton rating scale is correlated with the density of presynaptic serotonin transporters in 23 patients with Wilson's disease. J. Neurol. 250:576–580.

    Article  PubMed  CAS  Google Scholar 

  • Ferenci, P. (1997). Zinc treatment of Wilson's disease. In (J.D. Kruse-Jarres and J. Schölmerich, eds.), Zinc and Diseases of the Digestive Tract, Kluwer, Lancaster, UK, pp. 117–124.

  • Ferenci, P., Caca, K., Loudianos, G., Mieli-Vergani, G., Tanner, S., Sternlieb, I., Schilsky, M., Cox, D., and Berr, F. (2003). Diagnosis and Phenotypic Classification of Wilson Disease. Final report of the proceedings of the working party at the 8th International Meeting on WD and Menkes disease, Leipzig/Germany, April 16–18, 2001. Liver Int. 23:139–142.

  • Grimm, G., Madl, Ch., Katzenschlager, R., Oder, W., Ferenci, P., and Gangl, A. (1992). Detailed evaluation of brain dysfunction in patients with Wilson's disease. EEG Clin. Neurophysiol. 82:119–124.

    Article  CAS  Google Scholar 

  • Grimm, G., Oder, W., Prayer, L., Ferenci, P., and Madl, Ch. (1990). Prospective follow-up study in Wilson's disease. Lancet 336:963–964.

    Article  PubMed  CAS  Google Scholar 

  • Grimm, G., Prayer, L., Oder, W., Ferenci, P., Madl, Ch., Knoflach, P., Schneider, B., Imhof, H., and Gangl, A. (1991). Comparison of functional and structural brain disturbaces in Wilson's disease. Neurology 41:272–276.

    PubMed  CAS  Google Scholar 

  • Gu, M., Cooper, J.M., Butler, P., Walker, A.P., Mistry, P.K., Dooley, J.S., and Schapira, A.H. (2000). Oxidative-phosphorylation defects in liver of patients with Wilson's disease. Lancet 356:469–474.

    Article  PubMed  CAS  Google Scholar 

  • Guarino, M., Stracciari, A., D'Alessandro, R., and Pazzaglia, P. (1995). No neurological improvement after liver transplantation for Wilson's disease. Acta Neurol. Scand. 92:405–408.

    PubMed  CAS  Google Scholar 

  • Hellman, N., and Gitlin, J.D. (2002). Ceruloplasmin metabolism and function. Ann. Rev. Nutr. 22:439–458.

    CAS  Google Scholar 

  • Hermann, W., Barthel, H., Hesse, S., Grahmann, F., Kuhn, H.J., Wagner, A., and Villmann, T. (2002a). Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions. J. Neurol. 249:896–901.

    CAS  Google Scholar 

  • Hermann, W., Eggers, B., Barthel, H., Clark, D., Villmann, T., Hesse, S., Grahmann, F., Kuhn, H.J., Sabri, O., and Wagner, A. (2002b). Correlation between automated writing movements and striatal dopaminergic innervation in patients with Wilson's disease. J. Neurol. 249:1082–1087.

    Google Scholar 

  • Hesse, S., Barthel, H., Hermann, W., Murai, T., Kluge, R., Wagner, A., Sabri, O., and Eggers, B. (2003). Regional serotonin transporter availability and depression are correlated in Wilson's disease. J. Neural Transm. 110:923–933.

    Article  PubMed  CAS  Google Scholar 

  • Huffman, D.L., and O'Halloran, T.V. (2000). Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem. 70:677–701.

    Google Scholar 

  • Jacobs, D.A., Markowitz, C.E., Liebeskind, D.S., and Galetta, S.L. (2003). The “double panda sign” in Wilson's disease. Neurology 61:969.

    Google Scholar 

  • Kelley, E.J., and Palmiter, R.J. (1996). A murine model of Menkes disease reveals a physiological function of metallothionein. Nat. Genet. 13:219–222.

    Google Scholar 

  • Klomp, A.E., Tops, B.B., Van Denberg, I.E., Berger, R., and Klomp, L.W. (2002). Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem. J. 364:497–505.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Pena, M.M., Nose, Y., and Thiele, D.J. (2001). Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 277:4380–4387.

    PubMed  Google Scholar 

  • Mansouri, A., Gaou, I., Fromenty, B., Berson, A., Letteron, P., Degott, C., Erlinger, S., and Pessayre, D. (1997). Premature oxidative aging of hepatic mitochondrial DNA in Wilson's disease. Gastroenterology 113:599–605.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, M., and Smith, J.D. (1996). Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicty by oxidative insults and betaamyloid peptides. Nat. Genet. 14:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Oder, W., Grimm, G., Kollegger, H., Ferenci, P., Schneider, B., and Deecke, L. (1991). Neurological and neuropsychiatric spectrum of Wilson's disease. A prospective study in 45 cases. J. Neurol. 238:281–287.

    PubMed  CAS  Google Scholar 

  • Page, R.A., Davie, C.A., MacManus, D., Miszkiel, K.A., Walshe, J.M., Miller, D.H., Lees, A.J., and Schapira, A.H. (2004). Clinical correlation of brain MRI and MRS abnormalities in patients with Wilson disease. Neurology 63:638–643.

    PubMed  CAS  Google Scholar 

  • Palmiter, R.D. (1998). The elusive function of metallothioneins. Proc. Natl. Acad. Sci. USA 95:8428–8430.

    Article  PubMed  CAS  Google Scholar 

  • Patel, B.N., Dunn, R.J., Jeong, S.Y., Zhu, Q., Julien, J.P., and David, S. (2002). Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J. Neurosci. 22:6578–6586.

    PubMed  CAS  Google Scholar 

  • Payne, A.S., Kelly, E.J., and Gitlin, J.D. (1998). Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc. Natl. Acad. Sci U.S.A. 95:10854–10859.

    Article  PubMed  CAS  Google Scholar 

  • Rae, T., Schmidt, P., Pufahl, R., Culotta, V.C., and O'Halloran, T.V. (1999). Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science 284:805–808.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E.A., and Schilsky, M.L. (2003). AASLD practice guidelines: A practice guideline on Wilson disease. Hepatology 37:1475–1492.

    Article  PubMed  Google Scholar 

  • Schaefer, M., Hopkins, R., Failla, M., and Gitlin, J.D. (1999). Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am. J. Physiol. 276:G639–G646.

    PubMed  CAS  Google Scholar 

  • Schiefermeier, M., Kollegger, H., Madl, C., Polli, C., Oder, W., Kuhn, H., Berr, F., and Ferenci, P. (2000). The impact of apolipoprotein E genotypes on age at onset of symptoms and phenotypic expression in Wilson's disease. Brain 123:585–590.

    Article  PubMed  Google Scholar 

  • Sparks, D.L., and Schreurs, B.G. (2003). Proc. Natl. Acad. Sci. USA 100:11065–11069.

    Google Scholar 

  • Sternlieb, I. (1990). Perspectives on Wilson's disease. Hepatology 12:1234–1239.

    PubMed  CAS  Google Scholar 

  • Tanzi, R.E., Petrukhin, K., Chernov, I., Pellequer, U.L., Wasco, W., Ross, R., Romano, D.M., Parano, E., Pavone, L., Brzustowicz, L.M., Devoto, M., Peppercorn, J., Bush, A.I., Sternlieb, I., Pirastu, M., Gusella, J.F., Evgratov, O., Penchaszadeh, G.K., Honig, B., Edelman, I.S., Soares, M.B., Scheinberg, I.H., and Gilliam, T.C. (1993). The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 5:344–350.

    Article  PubMed  CAS  Google Scholar 

  • Tsivkovskii, R., Efremov, R.G., and Lutsenko, S. (2003). The role of invariant His-1069 in folding and function of the Wilson's disease protein, the human copper-transporting ATPase ATP7B. J. Biol. Chem. 278:13302–13308.

    Article  PubMed  CAS  Google Scholar 

  • van Wassenaer-van Hall, H.N., van den Heuvel, A.G., Algra, A., Hoogenraad, T.U., and Mali, W.P. (1996). Wilson disease: Findings at MR imaging and CT of the brain with clinical correlation. Radiology 198:531–536.

    PubMed  CAS  Google Scholar 

  • Watt, N.T., and Hooper, N.M. (2000). The response of neurones and glial cells to elevated copper. Brain Res. Bull. 55:219–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ferenci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitzberger, R., Madl, C. & Ferenci, P. Wilson Disease. Metab Brain Dis 20, 295–302 (2005). https://doi.org/10.1007/s11011-005-7910-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-005-7910-8

Keywords

Navigation