Skip to main content
Log in

microRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play essential roles in muscle cell proliferation and differentiation. The muscle-specific miRNAs miR-1 and miR-206 have been shown to regulate muscle development and promote myogenic differentiation; however, it is likely that a number of other miRNAs play important roles in regulating myogenesis as well. microRNA-128 (miR-128) has been reported to be highly expressed in brain and skeletal muscle, and we found that miR-128 is also up-regulated during bovine skeletal muscle satellite cell differentiation using microarray analysis and qRT-PCR. However, little is known about the functions of miR-128 in bovine skeletal muscle satellite cell development. In this study, we investigated the biological functions of miR-128 in bovine skeletal muscle cell development. Using a dual-luciferase reporter assay, we confirmed that miR-128 regulates the Sp1 gene. Over-expression of miR-128 reduced Sp1 protein levels and inhibited muscle satellite cell proliferation and differentiation. Inhibition of miR-128 increased Sp1 protein levels and promoted muscle satellite cell differentiation but also suppressed proliferation. Changes in miR-128 and Sp1 expression levels also affected the protein levels of MyoD and CDKN1A. Sp1, an activator of MyoD and a suppressor of CDKN1A, plays an important role in bovine muscle cell proliferation and differentiation. The results of our study reveal a mechanism by which miR-128 regulates bovine skeletal muscle satellite cell proliferation and myogenic differentiation via Sp1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs-genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  4. Callis TE, Wang DZ (2008) Taking microRNAs to heart. Trends Mol Med 14:254–260

    Article  CAS  PubMed  Google Scholar 

  5. van Rooij E, Liu N, Olson EN (2008) MicroRNAs flex their muscles. Trends Genet 24:159–166

    Article  PubMed  Google Scholar 

  6. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M (2009) Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA 106:13383–13387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ge Y, Sun Y, Chen J (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol 192:69–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Luo XJ, Xiong AW, Zhang ZD, Yue S, Zhu MS, Cheng SY (2010) MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J Biol Chem 285:26599–26607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8:278–284

    Article  CAS  PubMed  Google Scholar 

  13. Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, Wang J, Sun Y, Zhang P, Fan M, Shao N, Yang X (2008) Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36:2690–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K (2012) MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 287:21093–21101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G, Kunkel LM (2013) Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci 126:2678–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YM, Ding XB, Dai Y, Liu XF, Guo H, Zhang Y (2015) Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation. Mol Cell Biochem 404:113–122

    Article  CAS  PubMed  Google Scholar 

  18. Georgantas RW III, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104:2750–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Motohashi N, Alexander MS, Casar JC, Kunkel LM (2012) Identification of a novel microRNA that regulates the proliferation and differentiation in muscle side population cells. Stem Cells Dev 21:3031–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  PubMed  Google Scholar 

  21. Dong Q, Cai N, Tao T, Zhang R, Yan W, Li R, Zhang J, Luo H, Shi Y, Luan W, Zhang Y, You Y, Wang Y, Liu N (2014) An axis involving SNAI1, microRNA-128 and Sp1 modulates glioma progression. PLoS One 9(6):e98651

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo CS, Catherine D, Troy AF, Stauffer D, Thayer MJ (2003) Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J Biol Chem 278:22615–22622

    Article  CAS  PubMed  Google Scholar 

  23. Zhang T, Jiang T, Zhang F, Li C, Zhou YA, Zhu YF, Li XF (2010) Involvement of p21Waf1/Cip1 cleavage during roscovitine induced apoptosis in non small cell lung cancer cells. Oncol Rep 23(1):239–245

    CAS  PubMed  Google Scholar 

  24. Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H (2015) The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol-Anim. doi:10.1007/s11626-015-9953-4

    Google Scholar 

  25. Buckingham M (1992) Making muscle in mammals. Trends Genet 8:144–149

    Article  CAS  PubMed  Google Scholar 

  26. Emerson CP (1990) Myogenesis and developmental control genes. Curr Opin Cell Biol 2:1065–1075

    Article  CAS  PubMed  Google Scholar 

  27. Olson E (1990) MyoD family: a paradigm for development? Genes Dev 4:1454–1461

    Article  CAS  PubMed  Google Scholar 

  28. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S (1991) The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Article  CAS  PubMed  Google Scholar 

  29. Biesiada E, Hamamori Y, Kedes L, Sartorelli V (1999) Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac α-actin promoter. Mol Cell Biol 19:2577–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sartorelli V, Webster KA, Kedes L (1990) Muscle-specific expression of the cardiac α-actin gene requires MyoD1, CArG-box binding factor, and Spl. Genes Dev 4:1811–1822

    Article  CAS  PubMed  Google Scholar 

  31. Kitzmann M, Fernandez A (2001) Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58:571–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31201021), Natural Science Foundation of Tianjin (13JCQNJC14600), the Open Subjects for the Major Basic Research Program of Science and Technology Department of Inner Mongolia Autonomous Region (20130902), the Excellent Young Teachers Program of Tianjin (J010070514), and the Second-level Candidates Training Project of 131 Innovative Talents of Tianjin (J01005021104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Bin Ding or Hong Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Yang Dai and Wei Ran Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Zhang, W.R., Wang, Y.M. et al. microRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1. Mol Cell Biochem 414, 37–46 (2016). https://doi.org/10.1007/s11010-016-2656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2656-7

Keywords

Navigation