Skip to main content
Log in

Upregulation of SERCA2a following short-term ACE inhibition (by enalaprilat) alters contractile performance and arrhythmogenicity of healthy myocardium in rat

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic angiotensin-converting enzyme inhibitor (ACEIs) treatment can suppress arrhythmogenesis. To examine whether the effect is more immediate and independent of suppression of pathological remodelling, we tested the antiarrhythmic effect of short-term ACE inhibition in healthy normotensive rats. Wistar rats were administered with enalaprilat (ENA, i.p., 5 mg/kg every 12 h) or vehicle (CON) for 2 weeks. Intraarterial blood pressure in situ was measured in A. carotis. Cellular shortening was measured in isolated, electrically paced cardiomyocytes. Standard 12-lead electrocardiography was performed, and hearts of anaesthetized open-chest rats were subjected to 6-min ischemia followed by 10-min reperfusion to examine susceptibility to ventricular arrhythmias. Expressions of calcium-regulating proteins (SERCA2a, cardiac sarco/endoplasmic reticulum Ca2+-ATPase; CSQ, calsequestrin; TRD, triadin; PLB, phospholamban; Thr17–PLB—phosphorylated PLB at threonine-17, FKBP12.6, FK506-binding protein, Cav1.2—voltage-dependent L-type calcium channel alpha 1C subunit) were measured by Western blot; mRNA levels of L-type calcium channel (Cacna1c), ryanodine receptor (Ryr2) and potassium channels Kcnh2 and Kcnq1 were measured by qRT-PCR. ENA decreased intraarterial systolic as well as diastolic blood pressure (by 20 %, and by 31 %, respectively, for both P < 0.05) but enhanced shortening of cardiomyocytes at basal conditions (by 34 %, P < 0.05) and under beta-adrenergic stimulation (by 73 %, P < 0.05). Enalaprilat shortened QTc interval duration (CON 78 ± 1 ms vs. ENA 72 ± 2 ms; P < 0.05) and significantly decreased the total duration of ventricular fibrillations (VF) and the number of VF episodes (P < 0.05). Reduction in arrhythmogenesis was associated with a pronounced upregulation of SERCA2a (CON 100 ± 20 vs. ENA 304 ± 13; P < 0.05) and complete absence of basal Ca2+/calmodulin-dependent phosphorylation of PLB at Thr17. Short-term ACEI treatment can provide protection against I/R injury-induced ventricular arrhythmias in healthy myocardium, and this effect is associated with increased SERCA2a expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Swedberg, K on behalf of the CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316 (23):1429-1435. doi:10.1056/NEJM198706043162301

  2. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3):145–153. doi:10.1056/NEJM200001203420301

    Article  CAS  PubMed  Google Scholar 

  3. Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL, Olofsson B, Ostergren J, Yusuf S, Pocock S (2003) Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362(9386):759–766

    Article  CAS  PubMed  Google Scholar 

  4. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Ney DE, Snavely DB, Chang PI (1997) Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 349(9054):747–752

    Article  CAS  PubMed  Google Scholar 

  5. Boldt A, Wetzel U, Weigl J, Garbade J, Lauschke J, Hindricks G, Kottkamp H, Gummert JF, Dhein S (2003) Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. J Am Coll Cardiol 42(10):1785–1792

    Article  CAS  PubMed  Google Scholar 

  6. Goette A, Arndt M, Rocken C, Spiess A, Staack T, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U (2000) Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101(23):2678–2681

    Article  CAS  PubMed  Google Scholar 

  7. Vermes E, Tardif JC, Bourassa MG, Racine N, Levesque S, White M, Guerra PG, Ducharme A (2003) Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: insight from the Studies Of Left Ventricular Dysfunction (SOLVD) trials. Circulation 107(23):2926–2931. doi:10.1161/01.CIR.0000072793.81076

    Article  PubMed  Google Scholar 

  8. Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Dahlof B, Ibsen H, Julius S, Kjeldsen SE, Lindholm LH, Nieminen MS, Devereux RB (2005) Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol 45(5):712–719. doi:10.1016/j.jacc.2004.10.068

    Article  CAS  PubMed  Google Scholar 

  9. Madrid AH, Bueno MG, Rebollo JM, Marin I, Pena G, Bernal E, Rodriguez A, Cano L, Cano JM, Cabeza P, Moro C (2002) Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 106(3):331–336

    Article  CAS  PubMed  Google Scholar 

  10. Ueng KC, Tsai TP, Yu WC, Tsai CF, Lin MC, Chan KC, Chen CY, Wu DJ, Lin CS, Chen SA (2003) Use of enalapril to facilitate sinus rhythm maintenance after external cardioversion of long-standing persistent atrial fibrillation. Results of a prospective and controlled study. Eur Heart J 24(23):2090–2098

    Article  CAS  PubMed  Google Scholar 

  11. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10):709–717. doi:10.1056/NEJM199909023411001

    Article  CAS  PubMed  Google Scholar 

  12. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348(14):1309–1321. doi:10.1056/NEJMoa030207NEJMoa030207

    Article  CAS  PubMed  Google Scholar 

  13. Anger M, Lambert F, Chemla D, Desche P, Scalbert E, Lompre AM, Lecarpentier Y (1995) Sarcoplasmic reticulum Ca2+ pumps in heart and diaphragm of cardiomyopathic hamster: effects of perindopril. Am J Physiol 268(5 Pt 2):H1947–H1953

    CAS  PubMed  Google Scholar 

  14. Flesch M, Schiffer F, Zolk O, Pinto Y, Stasch JP, Knorr A, Ettelbruck S, Bohm M (1997) Angiotensin receptor antagonism and angiotensin converting enzyme inhibition improve diastolic dysfunction and Ca(2+)-ATPase expression in the sarcoplasmic reticulum in hypertensive cardiomyopathy. J Hypertens 15(9):1001–1009

    Article  CAS  PubMed  Google Scholar 

  15. Takeishi Y, Bhagwat A, Ball NA, Kirkpatrick DL, Periasamy M, Walsh RA (1999) Effect of angiotensin-converting enzyme inhibition on protein kinase C and SR proteins in heart failure. Am J Physiol 276(1 Pt 2):H53–H62

    CAS  PubMed  Google Scholar 

  16. Zalvidea S, Andre L, Loyer X, Cassan C, Sainte-Marie Y, Thireau J, Sjaastad I, Heymes C, Pasquie JL, Cazorla O, Aimond F, Richard S (2012) ACE inhibition prevents diastolic Ca2+ overload and loss of myofilament Ca2+ sensitivity after myocardial infarction. Curr Mol Med 12(2):206–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cernecka H, Ochodnicka-Mackovicova K, Kucerova D, Kmecova J, Nemcekova V, Doka G, Kyselovic J, Krenek P, Ochodnicky P, Klimas J (2013) Enalaprilat increases PPARbeta/delta expression, without influence on PPARalpha and PPARgamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol 714(1–3):472–477. doi:10.1016/j.ejphar.2013.06.040

    Article  CAS  PubMed  Google Scholar 

  18. Krenek P, Kmecova J, Kucerova D, Bajuszova Z, Musil P, Gazova A, Ochodnicky P, Klimas J, Kyselovic J (2009) Isoproterenol-induced heart failure in the rat is associated with nitric oxide-dependent functional alterations of cardiac function. Eur J Heart Fail 11(2):140–146. doi:10.1093/eurjhf/hfn026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Klimas J, Vaja V, Vercinska M, Kyselovic J, Krenek P (2012) Discrepant regulation of QT (QTc) interval duration by calcium channel blockade and angiotensin converting enzyme inhibition in experimental hypertension. Basic Clin Pharmacol Toxicol 111(4):279–288. doi:10.1111/j.1742-7843.2012.00901.x

    Article  CAS  PubMed  Google Scholar 

  20. Kmecova J, Klimas J (2010) Heart rate correction of the QT duration in rats. Eur J Pharmacol 641(2–3):187–192. doi:10.1016/j.ejphar.2010.05.038

    Article  CAS  PubMed  Google Scholar 

  21. Adameova A, Ravingerova T, Svec P, Faberova V, Kuzelova M (2007) The myocardial infarct size-limiting and antiarrhythmic effects of acyl-CoA:cholesterol acyltransferase inhibitor VULM 1457 protect the hearts of diabetic-hypercholesterolaemic rats against ischaemia/reperfusion injury both in vitro and in vivo. Eur J Pharmacol 576(1–3):114–121. doi:10.1016/j.ejphar.2007.07.064

    Article  CAS  PubMed  Google Scholar 

  22. Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DW et al (1988) The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res 22(7):447–455

    Article  CAS  PubMed  Google Scholar 

  23. Curtis MJ, Walker MJ (1988) Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res 22(9):656–665

    Article  CAS  PubMed  Google Scholar 

  24. Bacharova L, Plandorova J, Klimas J, Krenek P, Kyselovic J (2008) Discrepancy between increased left ventricular mass and “normal” QRS voltage is associated with decreased connexin 43 expression in early stage of left ventricular hypertrophy in spontaneously hypertensive rats. J Electrocardiol 41(6):730–734. doi:10.1016/j.jelectrocard.2008.01.013

    Article  PubMed  Google Scholar 

  25. Boknik P, Heinroth-Hoffmann I, Kirchhefer U, Knapp J, Linck B, Luss H, Muller T, Schmitz W, Brodde O, Neumann J (2001) Enhanced protein phosphorylation in hypertensive hypertrophy. Cardiovasc Res 51(4):717–728

    Article  CAS  PubMed  Google Scholar 

  26. Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110(17):2651–2657. doi:10.1161/01.CIR.0000145659.80212.6A

    Article  CAS  PubMed  Google Scholar 

  27. Mackovicova K, Gazova A, Kucerova D, Gajdacova B, Klimas J, Ochodnicky P, Goncalvesova E, Kyselovic J, Krenek P (2011) Enalapril decreases cardiac mass and fetal gene expression without affecting the expression of endothelin-1, transforming growth factor beta-1, or cardiotrophin-1 in the healthy normotensive rat. Can J Physiol Pharmacol 89(3):197–205. doi:10.1139/Y11-014

    Article  CAS  PubMed  Google Scholar 

  28. Matus M, Lewin G, Stumpel F, Buchwalow IB, Schneider MD, Schutz G, Schmitz W, Muller FU (2007) Cardiomyocyte-specific inactivation of transcription factor CREB in mice. FASEB J 21(8):1884–1892. doi:10.1096/fj.06-7915com

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262S1046-2023(01)91262-9

    Article  CAS  PubMed  Google Scholar 

  30. Murray KT, Rottman JN, Arbogast PG, Shemanski L, Primm RK, Campbell WB, Solomon AJ, Olgin JE, Wilson MJ, Dimarco JP, Beckman KJ, Dennish G, Naccarelli GV, Ray WA (2004) Inhibition of angiotensin II signaling and recurrence of atrial fibrillation in AFFIRM. Heart Rhythm 1(6):669–675. doi:10.1016/j.hrthm.2004.08.008

    Article  PubMed  Google Scholar 

  31. Pedersen OD, Bagger H, Kober L, Torp-Pedersen C (1999) Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 100(4):376–380

    Article  CAS  PubMed  Google Scholar 

  32. Crabos M, Roth M, Hahn AW, Erne P (1994) Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J Clin Invest 93(6):2372–2378. doi:10.1172/JCI117243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Garg S, Narula J, Marelli C, Cesario D (2006) Role of angiotensin receptor blockers in the prevention and treatment of arrhythmias. Am J Cardiol 97(6):921–925. doi:10.1016/j.amjcard.2005.10.028

    Article  CAS  PubMed  Google Scholar 

  34. Patlolla V, Alsheikh-Ali AA, Al-Ahmad AM (2006) The renin-angiotensin system: a therapeutic target in atrial fibrillation. Pacing Clin Electrophysiol 29(9):1006–1012. doi:10.1111/j.1540-8159.2006.00477.x

    Article  PubMed  Google Scholar 

  35. Chopra N, Knollmann BC (2009) Cardiac calsequestrin: the new kid on the block in arrhythmias. J Cardiovasc Electrophysiol 20(10):1179–1185. doi:10.1111/j.1540-8167.2009.01531.x

    Article  PubMed  Google Scholar 

  36. Bers DM, Despa S, Bossuyt J (2006) Regulation of Ca2+ and Na+ in normal and failing cardiac myocytes. Ann NY Acad Sci 1080:165–177. doi:10.1196/annals.1380.015

    Article  CAS  PubMed  Google Scholar 

  37. Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37(2):279–289

    Article  CAS  PubMed  Google Scholar 

  38. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376

    Article  CAS  PubMed  Google Scholar 

  39. del Monte F, Lebeche D, Guerrero JL, Tsuji T, Doye AA, Gwathmey JK, Hajjar RJ (2004) Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci USA 101(15):5622–5627. doi:10.1073/pnas.03057781010305778101

    Article  PubMed Central  PubMed  Google Scholar 

  40. Prunier F, Kawase Y, Gianni D, Scapin C, Danik SB, Ellinor PT, Hajjar RJ, Del Monte F (2008) Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation 118(6):614–624. doi:10.1161/CIRCULATIONAHA.108.770883

    Article  CAS  PubMed  Google Scholar 

  41. Wegener AD, Simmerman HK, Lindemann JP, Jones LR (1989) Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem 264(19):11468–11474

    CAS  PubMed  Google Scholar 

  42. Bai Y, Jones PP, Guo J, Zhong X, Clark RB, Zhou Q, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Semeniuk L, Guo A, Song LS, Duff HJ, Chen SR (2013) Phospholamban knockout breaks arrhythmogenic Ca(2)(+) waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice. Circ Res 113(5):517–526. doi:10.1161/CIRCRESAHA.113.301678

    Article  CAS  PubMed  Google Scholar 

  43. Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA, Fan GC, Tsiapras D, Parekh RR, Dorn GW 2nd, MacLennan DH, Kremastinos DT, Kranias EG (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103(5):1388–1393. doi:10.1073/pnas.0510519103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. van Rijsingen IA, van der Zwaag PA, Groeneweg JA, Nannenberg EA, Jongbloed JD, Zwinderman AH, Pinto YM, Dit Deprez RH, Post JG, Tan HL, de Boer RA, Hauer RN, Christiaans I, van den Berg MP, van Tintelen JP, Wilde AA (2014) Outcome in phospholamban R14del carriers: results of a large multicentre cohort study. Circ Cardiovasc Genet 7(4):455–465. doi:10.1161/CIRCGENETICS.113.000374

    Article  PubMed  Google Scholar 

  45. Davidoff AJ, Maki TM, Ellingsen O, Marsh JD (1997) Expression of calcium channels in adult cardiac myocytes is regulated by calcium. J Mol Cell Cardiol 29(7):1791–1803. doi:10.1006/jmcc.1997.0406

    Article  CAS  PubMed  Google Scholar 

  46. Trafford AW, Diaz ME, Negretti N, Eisner DA (1997) Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. Circ Res 81(4):477–484

    Article  CAS  PubMed  Google Scholar 

  47. Cutler MJ, Wan X, Laurita KR, Hajjar RJ, Rosenbaum DS (2009) Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circ Arrhythm Electrophysiol 2(6):686–694. doi:10.1161/CIRCEP.109.863118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100(2):380–389. doi:10.1172/JCI119544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE (2004) Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res 95(10):1035–1041. doi:10.1161/01.RES.0000148664.33695.2a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sovari AA, Rutledge CA, Jeong EM, Dolmatova E, Arasu D, Liu H, Vahdani N, Gu L, Zandieh S, Xiao L, Bonini MG, Duffy HS, Dudley SC Jr (2013) Mitochondria oxidative stress, connexin43 remodeling, and sudden arrhythmic death. Circ Arrhythm Electrophysiol 6(3):623–631. doi:10.1161/CIRCEP.112.976787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Guo J, Wang T, Yang T, Xu J, Li W, Fridman MD, Fisher JT, Zhang S (2011) Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation. J Biol Chem 286(40):34664–34674. doi:10.1074/jbc.M111.253351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wang YH, Shi CX, Dong F, Sheng JW, Xu YF (2008) Inhibition of the rapid component of the delayed rectifier potassium current in ventricular myocytes by angiotensin II via the AT1 receptor. Br J Pharmacol 154(2):429–439. doi:10.1038/bjp.2008.95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant APVV-0887-11 Molecular aspects of drug-induced heart failure and ventricular arrhythmias from the Slovak Research and Development Agency, the grants 1/0294/15 and 1/0564/13 from the Science Grant Agency (VEGA), Slovak Republic and by the grant of European Regional Development Fund—Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123), Czech Republic. The authors would like to thank Simona Kolembusova and Jan Tomasek for their excellent technical assistance.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kruzliak.

Additional information

Marek Matus and Dana Kucerova have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matus, M., Kucerova, D., Kruzliak, P. et al. Upregulation of SERCA2a following short-term ACE inhibition (by enalaprilat) alters contractile performance and arrhythmogenicity of healthy myocardium in rat. Mol Cell Biochem 403, 199–208 (2015). https://doi.org/10.1007/s11010-015-2350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2350-1

Keywords

Navigation