, Volume 357, Issue 1-2, pp 115-124
Date: 07 Jun 2011

Attenuation of oxidative stress, inflammation and early markers of tumor promotion by caffeic acid in Fe-NTA exposed kidneys of Wistar rats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Iron nitrilotriacetate (Fe-NTA), a chief environmental pollutant, is known for its extensive toxic manifestations on renal system. In the present study, caffeic acid, one of the most frequently occurring phenolic acids in fruits, grains, and dietary supplements was evaluated for its shielding effect against the Fe-NTA-induced oxidative, inflammatory, and pathological damage in kidney. Fe-NTA was administered (9 mg Fe/kg body weight) intraperitoneally to the Wistar male rats on 20th day while caffeic acid was administered orally (20 and 40 mg/kg body weight) before administration of Fe-NTA. The intraperitoneal administration of Fe-NTA-enhanced lipid peroxidation, xanthine oxidase, and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., catalase, glutathione peroxidase, and glutathione reductase. A sharp elevation in the levels of myloperoxidase, blood urea nitrogen (BUN), and serum creatinine has also been observed. Tumor promotion markers viz., ornithine decarboxylase (ODC) and [3H] thymidine incorporation into renal DNA were also significantly increased. Treatment of rats orally with caffeic acid (20 and 40 mg/kg body weight) resulted in a significant decrease in xanthine oxidase (P < 0.001), lipid peroxidation (P < 0.001), γ-glutamyl transpeptidase (P < 0.01), and H2O2 (P < 0.01). There was significant recovery of renal glutathione content (P < 0.001) and antioxidant enzymes (P < 0.001). There was also a reversal in the enhancement of renal ODC activity, DNA synthesis, BUN, and serum creatinine (P < 0.001). All these changes were supported by histological observations. The results indicate that caffeic acid may be beneficial in ameliorating the Fe-NTA-induced oxidative damage and tumor promotion in the kidney of rats.