Skip to main content
Log in

ROS-NFκΒ mediates TGF-β1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

TGF-β1 has been postulated as a pro-oncogenic factor in the late step of the tumoral progression. In transformed cells, TGF-β1 enhances the capacity to degrade the extracellular matrix, cell invasiveness and epithelial-mesenchymal transition, which are crucial steps for metastasis. Urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) are critical components in cell migration and invasion induced by TGF-β1, however, the exact mechanism by which TGF-β1 regulates uPA and MMP-9 is not well elucidated so far. In the present study, we analyzed the role of ROS-NFκΒ, signal as mediator in the cell malignity enhancement by TGF-β1. We found that TGF-β1 activates NFκΒ, through Rac1-NOXs-ROS-dependent mechanism. Our results shows that TGF-β1 stimulation of uPA and MMP-9 expression involve NOXs-dependent ROS and NFκΒ, activation, demonstrated by using DPI, NOXs inhibitor, ROS scavenger N-acetylcysteine and SN50, an NFkb inhibitor. Furthermore, we found that the inhibition of ROS and NFκΒ, abrogates TGF-β1 stimulation of EMT, cell motility and invasion. Thus, ROS-NFκΒ acts as the crucial signal in TGF-β1-induced uPA and MMP-9 expression thereby mediating the enhancement of cellular malignity by TGF-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TGF-β1:

Transforming growth factor-β1

NFκΒ:

Nuclear factor κ beta

ROS:

Reactive oxygen species

NOX:

NADPH oxidase

uPA:

Urokinase type plasminogen activator

MMP-9:

Matrix metalloproteinase-9

EMT:

Epithelial-mesenchymal transition

References

  1. Padua D, Massagué J (2009) Roles of TGFbeta in metastasis. Cell Res 19:89–102

    Article  CAS  PubMed  Google Scholar 

  2. Derynck R, Zhang Y (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  3. Hayden M, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  4. Rayet B, Gélinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947

    Article  CAS  PubMed  Google Scholar 

  5. Naugler W, Karin M (2008) NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26

    Article  CAS  PubMed  Google Scholar 

  6. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  PubMed  Google Scholar 

  7. Hordijk P (2006) Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98:453–462

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  9. Liotta L, Kohn E (2001) The microenvironment of the tumour–host interface. Nature 411:375–379

    Article  CAS  PubMed  Google Scholar 

  10. Kim J, Yu W, Kovalski K, Ossowski L (1998) Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94:353–362

    Article  CAS  PubMed  Google Scholar 

  11. Min C, Eddy S, Sherr D, Sonenshein G (2008) NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104:733–744

    Article  CAS  PubMed  Google Scholar 

  12. Santibáñez J, Iglesias M, Frontelo P, Martínez J, Quintanilla M (2000) Involvement of the Ras/MAPK signaling pathway in the modulation of urokinase production and cellular invasiveness by transforming growth factor-beta(1) in transformed keratinocytes. Biochem Biophys Res Commun 273:521–527

    Article  PubMed  Google Scholar 

  13. Edlund S, Landström M, Heldin C, Aspenström P (2002) Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13:902–914

    Article  CAS  PubMed  Google Scholar 

  14. Santibáñez J, Guerrero J, Quintanilla M, Fabra A, Martínez J (2002) Transforming growth factor-beta1 modulates matrix metalloproteinase-9 production through the Ras/MAPK signaling pathway in transformed keratinocytes. Biochem Biophys Res Commun 296:267–273

    Article  PubMed  Google Scholar 

  15. Caulín C, Scholl F, Frontelo P, Gamallo C, Quintanilla M (1995) Chronic exposure of cultured transformed mouse epidermal cells to transforming growth factor-beta 1 induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype. Cell Growth Differ 6:1027–1035

    PubMed  Google Scholar 

  16. Sovak M, Arsura M, Zanieski G, Kavanagh K, Sonenshein G (1999) The inhibitory effects of transforming growth factor beta1 on breast cancer cell proliferation are mediated through regulation of aberrant nuclear factor-kappaB/Rel expression. Cell Growth Differ 10:537–544

    CAS  PubMed  Google Scholar 

  17. Brar S, Kennedy T, Quinn M, Hoidal J (2003) Redox signaling of NF-kappaB by membrane NAD(P)H oxidases in normal and malignant cells. Protoplasma 221:117–127

    Article  CAS  PubMed  Google Scholar 

  18. Murillo MM, Carmona-Cuenca I, Del Castillo G, Ortiz C, Roncero C, Sánchez A, Fernández M, Fabregat I (2007) Activation of NADPH oxidase by transforming growth factor-beta in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-kappaB-dependent mechanism. Biochem J 405(2):251–259

    Article  CAS  PubMed  Google Scholar 

  19. Reuning U, Guerrini L, Nishiguchi T, Page S, Seibold H, Magdolen V, Graeff H, Schmitt M (1999) Rel transcription factors contribute to elevated urokinase expression in human ovarian carcinoma cells. Eur J Biochem 259:143–148

    Article  CAS  PubMed  Google Scholar 

  20. Yan C, Boyd D (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211:19–26

    Article  CAS  PubMed  Google Scholar 

  21. Wu W (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25:695–705

    Article  CAS  PubMed  Google Scholar 

  22. Christiansen J, Rajasekaran A (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank to M. Bozic and M. Stanojevic for their support, suggestions and comments. Funded by Fondo Nacional de Ciencia y Tecnologia (FONDECYT), grants 1050476 and 300045 to JFS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Santibanez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobar, N., Villar, V. & Santibanez, J.F. ROS-NFκΒ mediates TGF-β1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 340, 195–202 (2010). https://doi.org/10.1007/s11010-010-0418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0418-5

Keywords

Navigation