, Volume 339, Issue 1-2, pp 35-42

Alterations in erythrocyte membrane fluidity and Na+/K+-ATPase activity in chronic alcoholics

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Ethanol disorders biological membranes causing perturbations in the bilayer and also by altering the physicochemical properties of membrane lipids. But, chronic alcohol consumption also increases nitric oxide (NO) production. There was no systemic study was done related to alcohol-induced production of NO and consequent formation of peroxynitrite mediated changes in biophysical and biochemical properties, structure, composition, integrity and function of erythrocyte membranes in chronic alcoholics. Hence, keeping all these conditions in mind the present study was undertaken to investigate the role of over produced nitric oxide on red cell membrane physicochemical properties in chronic alcoholics. Human male volunteers aged 44 ± 6 years with similar dietary habits were divided into two groups, namely nonalcoholic controls and chronic alcoholics (~125 g of alcohol at least five times per week for the past 10–12 years). Elevated nitrite and nitrate levels in plasma and lysate, changes in erythrocyte membrane individual phospholipid composition, increased lipid peroxidation, protein carbonyls, cholesterol and phospholipids ratio (C/P ratio) and anisotropic value (γ) with decreased sulfhydryl groups and Na+/K+-ATPase activity in alcoholics was evident from this study. RBC lysate NO was positively correlated with C/P ratio (r = 0.547) and anisotropic (γ) value (r = 0.428), Na+/K+-ATPase activity was negatively correlated with RBC lysate NO (r = −0.372) and anisotropic (γ) value (r = −0.624) in alcoholics. Alcohol-induced overproduction of nitric oxide reacts with superoxide radicals to produce peroxynitrite, which appears to be responsible for changes in erythrocyte membrane lipids and the activity of Na+/K+-ATPase.