, Volume 282, Issue 1-2, pp 187-191

The effect of systemic leptin administration on aorta smooth muscle responses in diabetic rats

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Leptin produces effects in central nervous system and peripheral tissues via its specific receptors. Leptin also stimulates nitric oxide release in a concentration-dependent manner. In this study, our aim was to test the hypothesis that whether leptin has a modulatory role on endothelium or smooth muscle function in streptozotocin (STZ)-induced diabetic rats. Wistar-Albino rats were divided into four groups: 1 – Control, 2 – Diabetic, 3 – Control + leptin and 4 – Diabetic + leptin. Experimental diabetes was produced by intraperitoneal injection of a single dose of STZ (55 mg/kg). Diabetes was determined by increased fasting blood glucose level on the 7th day of the experiment. Leptin (0.1 mg/kg/day) was administered intraperitoneally for 5 days. At the end of the 5th day, thoracic aortas were isolated and phenylephrine (Phe)-induced contractions and acetylcholine (ACh)-induced relaxations of each group were estimated. In diabetic rats, Phe-induced contractility was increased (p < 0.05). Leptin pre-treatment increased the Phe-induced contractility significantly in aortic rings obtained from diabetic rats (p < 0.05). In normal rats, leptin administration produced only a slight and non-significant increase in Phe-induced contractions. Although the relaxant responses were decreased in diabetic rats, leptin administration enhanced the ACh-induced relaxation in both normal and diabetic animals significantly. As a conclusion; chronic leptin pre-treatment caused a significant increase both in Phe-induced contractions and ACh-induced Endothelial-Derived Relaxing Factor (EDRF)/Nitric oxide-mediated relaxations in the aortic rings isolated from streptozotocin-induced diabetic rats. This peptide hormone caused a significant increase in the relaxations obtained by ACh while not inducing a significant alteration in the contractile effect of Phe in control rats.