Skip to main content
Log in

Homotopy Colimits and Global Observables in Abelian Gauge Theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study chain complexes of field configurations and observables for Abelian gauge theory on contractible manifolds, and show that they can be extended to non-contractible manifolds using techniques from homotopy theory. The extension prescription yields functors from a category of manifolds to suitable categories of chain complexes. The extended functors properly describe the global field and observable content of Abelian gauge theory, while the original gauge field configurations and observables on contractible manifolds are recovered up to a natural weak equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbati M.C., Cirelli R., Mania A., Michor P.: Smoothness of the action of the gauge transformation group on connections. J. Math. Phys. 27, 2469 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Abbati M.C., Cirelli R., Mania A.: The orbit space of the action of the gauge transformation group on connections. J. Geom. Phys. 6, 537 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Becker, C., Schenkel, A., Szabo, R.J.: Differential cohomology and locally covariant quantum field theory. arXiv:1406.1514 [hep-th]

  4. Belov, D., Moore, G.W.: Holographic action for the self-dual field. arXiv:hep-th/0605038

  5. Benini, M.: Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies. arXiv:1401.7563 [math-ph]

  6. Benini, M., Dappiaggi, C., Hack, T.-P., Schenkel, A.: A C *-algebra for quantized principal U(1)-connections on globally hyperbolic Lorentzian manifolds. Commun. Math. Phys. 332, 477 (2014). arXiv:1307.3052 [math-ph]

  7. Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds. Commun. Math. Phys. 330, 123 (2014). arXiv:1303.2515 [math-ph]

  8. Bouwknegt P.: Lectures on cohomology, T-duality, and generalized geometry. Lect. Notes Phys. 807, 261 (2010)

    Article  ADS  Google Scholar 

  9. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. arXiv:1306.1058 [math-ph]

  10. Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic structure of classical field theory I: Kinematics and linearized dynamics for real scalar fields. arXiv:1209.2148 [math-ph]

  11. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). arXiv:math-ph/0112041

  12. Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhäuser, Boston (2007)

    Google Scholar 

  13. Castiglioni, J.L., Cortiñas, G.: Cosimplicial versus DG-rings: a version of the Dold–Kan correspondence. J. Pure Appl. Algebra 191, 119 (2004). arXiv:math.KT/0306289

  14. Ciolli, F., Ruzzi, G., Vasselli, E.: Causal posets, loops and the construction of nets of local algebras for QFT. Adv. Theor. Math. Phys. 16, 645 (2012). arXiv:1109.4824 [math-ph]

  15. Ciolli, F., Ruzzi, G., Vasselli, E.: QED representation for the net of causal loops. arXiv:1305.7059 [math-ph]

  16. Crainic, M.: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes. Comment. Math. Helv. 78 681 (2003). arXiv:math.DG/0008064

  17. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012). arXiv:1104.1374 [gr-qc]

  18. Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013). arXiv:1106.5575 [gr-qc]

  19. Dugger, D.: A primer on homotopy colimits. Available at http://pages.uoregon.edu/ddugger/hocolim.pdf

  20. Dwyer, W.G., Spalinski, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, p. 73. North-Holland, Amsterdam (1995)

  21. Fantechi B.: Stacks for everybody. Progr. Math. 201, 349 (2001)

    MathSciNet  Google Scholar 

  22. Fewster, C.J., Lang, B.: Dynamical locality of the free Maxwell field. arXiv:1403.7083 [math-ph]

  23. Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin one fields in curved space-time. J. Math. Phys. 44, 4480 (2003). arXiv:gr-qc/0303106

  24. Fiorenza, D., Sati, H., Schreiber, U.: A higher stacky perspective on Chern–Simons theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies, p. 153. Springer, Berlin (2015). arXiv:1301.2580 [hep-th]

  25. Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: Kastler, D. (ed.) The Algebraic Theory of Superselection Sectors: Introduction and Recent Results, p. 379. World Scientific Publishing, Singapore (1990)

  26. Fredenhagen, K.: Global observables in local quantum physics. In: Araki, H., Ito, K.R., Kishimoto, A., Ojima, I. (eds.) Quantum and Non-Commutative Analysis: Past, Present and Future Perspectives, p. 41. Kluwer Academic Publishers, Dordrecht (1993)

  27. Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras II: geometric aspects and conformal covariance. Rev. Math. Phys. 4, 113 (1992)

    Article  MathSciNet  Google Scholar 

  28. Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93 (2012). arXiv:1101.5112 [math-ph]

  29. Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013). arXiv:1110.5232 [math-ph]

  30. Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom. VII, 129 (2000). arXiv:hep-th/0011220

  31. Freed, D.S., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819 (1999). arXiv:hep-th/9907189

  32. Goerss P.G., Jardine J.F.: Simplicial Homotopy Theory. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  33. Hollander, S.: A homotopy theory for stacks. Isr. J. Math. 163, 93 (2008). arXiv:math.AT/0110247

  34. Hollands, S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). arXiv:0705.3340 [gr-qc]

  35. Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70, 329 (2005). arXiv:math.AT/0211216

  36. Jardine J.F.: A closed model structure for differential graded algebras. Fields Inst. Commun. 17, 55 (1997)

    MathSciNet  Google Scholar 

  37. Khavkine, I.: Covariant phase space, constraints, gauge and the Peierls formula. Int. J. Mod. Phys. A 29, 1430009 (2014). arXiv:1402.1282 [math-ph]

  38. Khavkine, I.: Local and gauge invariant observables in gravity. arXiv:1503.03754 [gr-qc]

  39. Rodríguez-González, B.: Realizable homotopy colimits. Theor. Appl. Categ. 29, 609 (2014). arXiv:1104.0646 [math.AG]

  40. Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss’ law. Commun. Math. Phys. 328, 625 (2014). arXiv:1211.6420 [math-ph]

  41. Szabo, R.J.: Quantization of higher Abelian gauge theory in generalized differential cohomology. PoS ICMP 2012, 009 (2012). arXiv:1209.2530 [hep-th]

  42. Vistoli, A.: Grothendieck topologies, fibred categories and descent theory. Math. Surv. Monogr. 123, 1 (2005). arXiv:math.AG/0412512

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schenkel.

Additional information

Report No. EMPG-15-04.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benini, M., Schenkel, A. & Szabo, R.J. Homotopy Colimits and Global Observables in Abelian Gauge Theory. Lett Math Phys 105, 1193–1222 (2015). https://doi.org/10.1007/s11005-015-0765-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0765-y

Mathematics Subject Classification

Keywords

Navigation