Skip to main content
Log in

Double Bruhat Cells in Kac–Moody Groups and Integrable Systems

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a family of integrable Hamiltonian systems generalizing the relativistic periodic Toda lattice, which is recovered as a special case. The phase spaces of these systems are double Bruhat cells corresponding to pairs of Coxeter elements in the affine Weyl group. In the process we extend various results on double Bruhat cells in simple algebraic groups to the setting of Kac–Moody groups. We also generalize some fundamental results in Poisson–Lie theory to the setting of ind-algebraic groups, which is of interest beyond our immediate applications to integrable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berenstein A., Fomin S., Zelevinsky A.: Cluster algebras III: upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  3. Drinfel’d V.: Quantum groups. J. Soviet Math. 41(2), 898–915 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eager, R., Franco, S., Schaeffer, K.: Dimer models and integrable systems. Preprint. arXiv:1107.1244 (2011)

  5. Fishel S., Grojnowski I., Teleman C.: The strong Macdonald conjecture and Hodge theory on the loop Grassmannian. Ann. Math. 168(1), 175–220 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fock, V.V., Marshakov, A.: Integrable Systems, Cluster Variables, and Dimers. In Preparation (2012)

  7. Fomin S., Zelevinsky A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12(2), 335–380 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gekhtman M., Shapiro M., Vainshtein A.: Generalized Bäcklund-Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective. Acta Math. 206(2), 245–310 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goncharov, A.B., Kenyon, R.: Dimers and Cluster Integrable Systems. Preprint arXiv:1107.5588 (2011)

  10. Hoffmann T., Kellendonk J., Kutz N., Reshetikhin N.: Factorization dynamics and Coxeter–Toda lattices. Commun. Math. Phys. 212(2), 297–321 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Kac V.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  12. Kac V., Peterson D.: Infinite flag varieties and conjugacy theorems. Proc. Natl. Acad. Sci. USA 80(6), 1778–1782 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Kac, V., Peterson, D.: Regular Functions on Certain Infinite-Dimensional Groups. Arithmetic and Geometry. Progr. Math., vol. II, pp. 141–166. Birkhäuser, Boston (1983)

  14. Kogan M., Zelevinsky A.: On symplectic leaves and integrable systems in standard complex semisimple Poisson–Lie groups. Int. Math. Res. Not. 2002(32), 1685–1702 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kosmann-Schwarzbach, Y.: Lie Bialgebras, Poisson Lie Groups and Dressing Transformations. Integrability of Nonlinear Systems. Lecture Notes in Physics, pp. 104–170. Springer, Berlin (1996)

  16. Kumar, S.: Kac–Moody Groups, Their Flag Varieties, and Representation Theory. Progr. Math., vol. 204. Birkhäuser, Boston (2002)

  17. Lu J., Weinstein A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differ. Geom. 31(2), 501–526 (1990)

    MATH  MathSciNet  Google Scholar 

  18. Marshakov, A.: Lie Groups, Cluster Variables and Integrable Systems. Preprint arXiv:1207.1869v1 (2012)

    Google Scholar 

  19. Mathieu, O.: Formules de Caracteres pour les Algebres de Kac–Moody Generales. Asterisque, Societe Mathematique de France, Marseilles (1988)

  20. Nekrasov N.: Five-dimensional Gauge theories and relativistic integrable systems. Nuclear Phys. B 531(1–3), 323–344 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Reshetikhin N.: Integrability of characteristic Hamiltonian systems on simple Lie groups with standard Poisson Lie structure. Commun. Math. Phys. 242(1), 1–29 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  22. Reyman, A., Semenov-Tian-Shansky, M.: Group-theoretical methods in the theory of finite-dimensional integrable systems. Dynamical Systems VII: Integrable Systems, Nonholonomic Dynamical Systems. Encyclopedia of Mathematical Sciences, vol. 1, p. 341. Springer, Berlin (1994)

  23. Ruijsenaars S.: Relativistic Toda systems. Commun. Math. Phys. 133(2), 217–247 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Shafarevich I.: On some infinite-dimensional groups II. Izv. Akad. Nauk. SSSR Ser. Mat. 45(1), 214–226 (1981)

    MATH  MathSciNet  Google Scholar 

  25. Suris Y.: Algebraic structure of discrete-time and relativistic Toda lattices. Phys. Lett. A 156(9), 467–474 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  26. Vanhaecke P.: Integrable systems in the realm of algebraic geometry. Lecture Notes in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  27. Williams, H.: Cluster ensembles and Kac-Moody groups. Submitted. arXiv:1210.2533 (2012)

  28. Yang S., Zelevinsky A.: Cluster algebras of finite type via Coxeter elements and principal minors. Transform. Groups 13(3–4), 855–895 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zelevinsky A.: Connected components of real double Bruhat cells. Int. Math. Res. Not. 2000(21), 1131–1154 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, H. Double Bruhat Cells in Kac–Moody Groups and Integrable Systems. Lett Math Phys 103, 389–419 (2013). https://doi.org/10.1007/s11005-012-0604-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0604-3

Mathematics Subject Classification (2010)

Keywords

Navigation