, Volume 89, Issue 3, pp 249-263
Date: 16 Sep 2009

An Explicit Formula for the Natural and Conformally Invariant Quantization

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Lecomte (Prog Theor Phys Suppl 144:125–132, 2001) conjectured the existence of a natural and conformally invariant quantization. In Mathonet and Radoux (Existence of natural and conformally invariant quantizations of arbitrary symbols, math.DG 0811.3710), we gave a proof of this theorem thanks to the theory of Cartan connections. In this paper, we give an explicit formula for the natural and conformally invariant quantization of trace-free symbols thanks to the method used in Mathonet and Radoux and to tools already used in Radoux [Lett Math Phys 78(2):173–188, 2006] in the projective setting. This formula is extremely similar to the one giving the natural and projectively invariant quantization in Radoux.