, Volume 45, Issue 1, pp 31-48
Date: 06 Nov 2012

Non-stationary Geostatistical Modeling Based on Distance Weighted Statistics and Distributions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A common assumption in geostatistics is that the underlying joint distribution of possible values of a geological attribute at different locations is stationary within a homogeneous domain. This joint distribution is commonly modeled as multi-Gaussian, with correlations defined by a stationary covariance function. This results in attribute maps that fail to reproduce local changes in the mean, in the variance and, particularly, in the spatial continuity. The proposed alternative is to build local distributions, variograms, and correlograms. These are inferred by weighting the samples depending on their distance to selected locations. The local distributions are locally transformed into Gaussian distributions embedding information on the local histogram. The distance weighted experimental variograms and correlograms are able to adapt to local changes in the direction and range of spatial continuity. The automatically fitted local variogram models and the local Gaussian transformation parameters are used in spatial estimation algorithms assuming local stationarity. The resulting maps are rich in nonstationary spatial features. The proposed process implies a higher computational effort than traditional stationary techniques, but if data availability allows for a reliable inference of the local distributions and statistics, a higher accuracy of estimates can be achieved.