Mathematical Geosciences

, 41:887

Multivariate Intrinsic Random Functions for Cokriging

  • Chunfeng Huang
  • Yonggang Yao
  • Noel Cressie
  • Tailen Hsing
Article

DOI: 10.1007/s11004-009-9218-4

Cite this article as:
Huang, C., Yao, Y., Cressie, N. et al. Math Geosci (2009) 41: 887. doi:10.1007/s11004-009-9218-4
  • 142 Downloads

Abstract

In multivariate geostatistics, suppose that we relax the usual second-order-stationarity assumptions and assume that the component processes are intrinsic random functions of general orders. In this article, we introduce a generalized cross-covariance function to describe the spatial cross-dependencies in multivariate intrinsic random functions. A nonparametric method is then proposed for its estimation. Based on this class of generalized cross-covariance functions, we give cokriging equations for multivariate intrinsic random functions in the presence of measurement error. A simulation is presented that demonstrates the accuracy of the proposed nonparametric estimation method. Finally, an application is given to a dataset of plutonium and americium concentrations collected from a region of the Nevada Test Site used for atomic-bomb testing.

Keywords

Atomic-bomb testing Generalized cross-covariance Geostatistics Kriging Spatial prediction 

Copyright information

© International Association for Mathematical Geosciences 2009

Authors and Affiliations

  • Chunfeng Huang
    • 1
  • Yonggang Yao
    • 2
  • Noel Cressie
    • 2
  • Tailen Hsing
    • 3
  1. 1.Department of StatisticsIndiana UniversityBloomingtonUSA
  2. 2.Department of StatisticsThe Ohio State UniversityColumbusUSA
  3. 3.Department of StatisticsUniversity of MichiganAnn ArborUSA