Abend, K., Harley, T. J., and Kanal, L. N., 1965, Classification of binary random patterns: IEEE Trans. Info. Theory, v. 11, no. 4, p. 538–544.

CrossRefBesag, J., 1986, On the statistical analysis of dirty pictures (with discussions): J. Royal Stat. Soc., Ser. B, v. 48, no. 3, p. 259–302.

Carle, S. F., and Fogg, G. E., 1996, Transition probability-based indicator geostatistics: Math. Geol., v. 28, no. 4, p. 453–477.

CrossRefCarle, S. F., and Fogg, G. E., 1997, Modeling spatial variability with one- and multi-dimensional continuous Markov chains: Math. Geol., v. 29, no. 7, p. 891–918.

CrossRefDeutsch, C. V., and Journel, A. G., 1998, GSLIB: Geostatistical software library and user&s guide 2nd ed.: Oxford University Press, New York, 369 p.

Elfeki, A. M., and Dekking, F. M., 2001, A Markov chain model for subsurface characterization: Theory and applications: Math. Geol., v. 33, no. 5, p. 569–589.

Geman, S., and Geman, D., 1984, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images: IEEE Trans. Pattern Analy. Mach. Intell., v. 6, no. 6, p. 721–741.

CrossRefGoovaerts, P., 1997, Geostatistics for natural resources evaluation: Oxford University Press, New York, 483 p.

Koltermann, E. C., and Gorelick, S. M., 1996, Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches: Water Resour. Res., v. 32, no. 9, p. 2617–2658.

CrossRefKrumbein, W. C., 1968, FORTRAN IV computer program for simulation of transgression and regression with continuous time Markov models: Computer Contribution 26, Kansas, Geol. Surv., 38 p.

Li, W., 2006a, Markov chain random fields for estimation of categorical variables: Math. Geol., v. 39, no. 3.

Li, W., 2006b, Transiogram: A spatial relationship measure for categorical data: Inter. J. Geog. Info. Sci., v. 20, no. 6, p. 693–699.

Li, W., Li, B., and Shi, Y., 1999, Markov-chain simulation of soil textural profiles: Geoderma, v. 92, no. 1, p. 37–53.

CrossRefLi, W., Li, B., Shi, Y., and Tang, D., 1997, Application of the Markov-chain theory to describe spatial distribution of textural layers: Soil Sci., v. 162, no. 9, p. 672–683.

CrossRefLi, W., Zhang, C., Burt, J. E., Zhu, A. X., and Feyen, J., 2004, Two-dimensional Markov chain simulation of soil type spatial distribution: Soil Sci. Soc. Am. J., v. 68, no. 5, p. 1479–1490.

CrossRefLin, C., and Harbaugh, J. W., 1984, Graphic display of two- and three-dimensional Markov computer models in geology: Van Nostrand Reinhold Company, New York, 180 p.

Ma, Y. Z., and Jones, T. A., 2001, Teacher&s aide: Modeling hole-effect variograms of lithology-indicator variables: Math. Geol., v. 33, no. 5, p. 631–648.

CrossRefNorberg, T., Rosen, L., Baran, A., and Baran, S., 2002, On modeling discrete geological structure as Markov random fields: Math. Geol., v. 34, no. 1, p. 63–77.

CrossRefPickard, D. K., 1980, Unilateral Markov fields: Adv. Appl. Probab., v. 12, no. 3, p. 655–671.

CrossRefPotter, P. E., and Blakely, R. F., 1967, Generation of a synthetic vertical profile of a fluvial sandstone body: J. Soc. Petr. Eng. AIME, v. 7, no. 3, p. 243–251.

Qian, W., and Titterington, D. M., 1991, Multidimensional Markov chain models for image textures: J. Royal Stat. Soc, Ser. B, v. 53, no. 3, p. 661–674.

Ritzi, R. W., 2000, Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies: Water Resour. Res., v. 36, no. 11, p. 3375–3381.

CrossRefSharp, W. E., and Aroian, L. A., 1985, The generation of multidimensional autoregressive series by the herringbone method: Math. Geol., v. 17, no. 1, p. 67–79.

CrossRefTjelmeland, H., and Besag, J., 1998, Markov Random fields with higher-order interactions: Scand. J. Statist. v. 25, no. 3, p. 415–433.

CrossRefWeissmann, G. S., and Fogg, G. E., 1999, Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework: J. Hydrol., v. 226, no. 1, p. 48–65.

Wu, K., Nunan, N., Crawford, J. W., Young, I. M., and Ritz, K., 2004, An efficient Markov chain model for the simulation of heterogeneous soil structure: Soil Sci. Soc. Am. J., v. 68, no. 2, p. 346–351.

CrossRefZhang, C., and Li, W., 2005, Markov chain modeling of multinomial land-cover classes: GIScience Remote Sens., v. 42, no. 1, p. 1–18.