Machine Learning

, Volume 96, Issue 1, pp 189–224

Improving active Mealy machine learning for protocol conformance testing

  • Fides Aarts
  • Harco Kuppens
  • Jan Tretmans
  • Frits Vaandrager
  • Sicco Verwer
Article

DOI: 10.1007/s10994-013-5405-0

Cite this article as:
Aarts, F., Kuppens, H., Tretmans, J. et al. Mach Learn (2014) 96: 189. doi:10.1007/s10994-013-5405-0

Abstract

Using a well-known industrial case study from the verification literature, the bounded retransmission protocol, we show how active learning can be used to establish the correctness of protocol implementation I relative to a given reference implementation R. Using active learning, we learn a model MR of reference implementation R, which serves as input for a model-based testing tool that checks conformance of implementation I to MR. In addition, we also explore an alternative approach in which we learn a model MI of implementation I, which is compared to model MR using an equivalence checker. Our work uses a unique combination of software tools for model construction (Uppaal), active learning (LearnLib, Tomte), model-based testing (JTorX, TorXakis) and verification (CADP, MRMC). We show how these tools can be used for learning models of and revealing errors in implementations, present the new notion of a conformance oracle, and demonstrate how conformance oracles can be used to speed up conformance checking.

Keywords

Active learning Automaton learning Mealy machines State machine synthesis Model-based testing Protocol learning Model checking 

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Fides Aarts
    • 1
  • Harco Kuppens
    • 1
  • Jan Tretmans
    • 1
    • 2
  • Frits Vaandrager
    • 1
  • Sicco Verwer
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.TNO—Embedded Systems InnovationEindhovenThe Netherlands

Personalised recommendations