Ahmed, A., Yu, K., Xu, W., Gong, Y., & Xing, E. P. (2008). Training hierarchical feed-forward visual recognition models using transfer learning from pseudo tasks. In Proc. 10th European conference on computer vision (ECCV).
Aiello, M., Pratt-Hartmann, I., & van Benthem, J. (Eds.) (2007).
Handbook of spatial logics. Berlin: Springer.
MATH
Bakır, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vishwanathan, S. V. N. (Eds.) (2007). Predicting structured data. Cambridge: MIT Press.
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In Advances in neural information processing systems (Vol. 19, pp. 153–160). Cambridge: MIT Press.
Bordes, A., Weston, J., Collobert, R., & Bengio, Y. (2011). Learning structured embeddings of knowledge bases. In Proc. 25th conference on artificial intelligence (AAAI).
Bottou, L. (2008). Artificial intelligence in seven years? Seminar presentation, University of Montreal, June 2008.
http://www.iro.umontreal.ca/~lisa/seminaires/26-06-2008.html.
Bottou, L. (2011). From machine learning to machine reasoning, February 2011.
arXiv:1102.1808v3.
Bottou, L., & Gallinari, P. (1991). A framework for the cooperation of learning algorithms. In Advances in neural information processing systems (Vol. 3). San Mateo: Morgan Kaufmann.
Bottou, L., LeCun, Y., & Bengio, Y. (1997). Global training of document processing systems using graph transformer networks. In Proc. of computer vision and pattern recognition (pp. 489–493). New York: IEEE Press.
Buntine, W. (1994). Operations for learning with graphical models. The Journal of Artificial Intelligence Research, 2, 159–225.
Caruana, R. (1997). Multitask learning.
Machine Learning,
28, 41–75.
CrossRef
Collobert, R. (2011). Deep learning for efficient discriminative parsing. In Proc. artificial intelligence and statistics (AISTAT).
Collobert, R., & Weston, J. (2007). Fast semantic extraction using a novel neural network architecture. In Proc. 45th annual meeting of the association of computational linguistics (ACL) (pp. 560–567).
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch.
Journal of Machine Learning Research,
12, 2493–2537.
MATH
Wiesel, T. N., & Hubel, D. H. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.
Journal of Physiology,
160, 106–154.
CrossRef
Etter, V. (2009). Semantic vector machines. Master’s thesis, EPFL.
Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In Proc. sixteenth international joint conference on artificial intelligence (pp. 1300–1307).
Grangier, D., Bottou, L., & Collobert, R. (2009). Deep convolutional networks for scene parsing. ICML 2009 Deep Learning Workshop.
http://david.grangier.info/scene_parsing.
Harris, Z. S. (1968).
Mathematical structures of language. New York: Wiley.
MATH
Hilbert, D., & Ackermann, W. (1928).
Grundzüge der theoretischen Logik. Berlin: Springer.
MATH
Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks.
Artificial Intelligence,
46, 47–75.
CrossRef
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets.
Neural Computation,
18, 1527–1554.
MathSciNetCrossRefMATH
Hoiem, D., Stein, A., Efros, A. A., & Hebert, M. (2007). Recovering occlusion boundaries from a single image. In Proc. international conference on computer vision (CVPR).
Khardon, R., & Roth, D. (1997). Learning to reason.
Journal of the ACM,
44(5), 697–725.
MathSciNetCrossRefMATH
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient based learning applied to document recognition.
Proceedings of the IEEE,
86(11), 2278–2324.
CrossRef
LeCun, Y., Bottou, L., & HuangFu, J. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In Proc. computer vision and pattern recognition.
Lighthill, J. (1973). Artificial intelligence: a general survey. In Artificial intelligence: a paper symposium. Science Research Council.
Lonardi, S., Sperduti, A., & Starita, A. (1994). Encoding pyramids by labeling RAAM. In Proc. neural networks for signal processing.
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding.
Journal of Machine Learning Research,
11, 10–60.
MathSciNet
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information.
Psychological Review,
63(2), 343–355.
CrossRef
Miller, M. (2006). Personal communication.
Minsky, M., & Papert, S. (1969).
Perceptrons. Cambridge: MIT Press.
MATH
Neville, J., & Jensen, D. (2003). Collective classification with relational dependency networks. In Proc. second international workshop on multi-relational data mining (pp. 77–91).
NIPS (1987–2010). Advances in neural processing information systems. Volumes 0 to 22.
Paccanaro, A., & Hinton, G. E. (2001). Learning hierarchical structures with linear relational embedding. In Advances in neural information processing systems (Vol. 14). Cambridge: MIT Press.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufmann.
Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge: Cambridge University Press.
Piaget, J. (1937). La construction du réel chez l’enfant. Neuchatel: Delachaux et Niestlé.
Plate, T. (1994). Distributed Representations and Nested Compositional Structure. PhD thesis, Department of Computer Science, University of Toronto.
Pollack, J. B. (1990). Recursive distributed representations.
Artificial Intelligence,
46, 77–105.
CrossRef
Popper, K. (1959).
The logic of scientific discovery. Stroudsburg: Dowden, Hutchinson and Ross.
MATH
Richardson, M., & Domingos, P. (2006). Markov logic networks.
Journal of Machine Learning Research,
62, 107–136.
CrossRef
Riesenhuber, M., & Poggio, T. (2003). How visual cortex recognizes objects: the tale of the standard model. The Visual Neurosciences, 2, 1640–1653.
Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Communications of the ACM, 5, 23–41.
Roth, D. (1996). On the hardness of approximate reasoning.
Artificial Intelligence,
82, 273–302.
MathSciNetCrossRef
Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). Labelme: a database and web-based tool for image annotation.
International Journal of Computer Vision,
77(1–3), 157–173.
CrossRef
Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems.
Artificial Intelligence,
46, 159–216.
MathSciNetCrossRefMATH
Socher, R., Ng, A., & Manning, C. (2010). Learning continuous phrase representations and syntactic parsing with recursive neural networks. NIPS Deep Learning workshop presentation, November 2010.
http://deeplearningworkshopnips2010.wordpress.com/schedule/oral1.
Socher, R., Lin, C., Ng, A. Y., & Manning, C. D. (2011). Parsing natural scenes and natural language with recursive neural networks. In Proc. 28th international conference on machine learning (ICML).
Sperduti, A. (1994). In advances in neural information processing systems: Vol. 5. Encoding labeled graphs by labeling RAAM. San Mateo: Morgan Kaufmann.
Ponce, J., Lazebnik, S., & Schmid, C. (2006). Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In Proc. computer vision and pattern recognition (Vol. II, pp. 2169–2178).
Vapnik, V. N. (1995).
The nature of statistical learning theory. Berlin: Springer.
CrossRefMATH
von Ahn, L. (2006). Games with a purpose.
IEEE Computer,
39(6), 92–94
CrossRef
Welling, M. (2009). Herding dynamic weights to learn. In Proc. 26th international conference on machine learning (pp. 1121–1128).
Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. In
Proc. 25th international conference on machine learning (pp. 1168–1175).
CrossRef