Angilella, S., Greco, S., & Matarazzo, B. (2009). Non-additive robust ordinal regression with Choquet integral, bipolar and level dependent Choquet integrals. In Proceedings of the joint 2009 international fuzzy systems association world congress and 2009 European society of fuzzy logic and technology conference. IFSA/EUSFLAT (pp. 1194–1199).
Beliakov, G. (2008). Fitting fuzzy measures by linear programming. Programming library fmtools. In Proc. FUZZ-IEEE 2008, IEEE international conference on fuzzy systems, Piscataway, NJ (pp. 862–867).
Beliakov, G., & James, S. (2011). Citation-based journal ranks: the use of fuzzy measures.
Fuzzy Sets and Systems,
167(1), 101–119.
MathSciNetMATHCrossRef
Ben-David, A. (1995). Monotonicity maintenance in information-theoretic machine learning algorithms. Machine Learning, 19, 29–43.
Ben-David, A., Sterling, L., & Pao, Y. H. (1989). Learning and classification of monotonic ordinal concepts.
Computational Intelligence,
5(1), 45–49.
CrossRef
Bohanec, M., & Rajkovic, V. (1990). Expert system for decision making. Sistemica, 1(1), 145–157.
Chandrasekaran, R., Ryu, Y., Jacob, V., & Hong, S. (2005). Isotonic separation.
INFORMS Journal on Computing,
17, 462–474.
MathSciNetMATHCrossRef
Choquet, G. (1954). Theory of capacities.
Annales de L’Institut Fourier,
5, 131–295.
MathSciNetCrossRef
Daniels, H., & Kamp, B. (1999). Applications of mlp networks to bond rating and house pricing.
Neural Computation and Applications,
8, 226–234.
CrossRef
Dembczyński, K., Kotłowski, W., & Słowiński, R. (2006). Additive preference model with piecewise linear components resulting from dominance-based rough set approximations. In Lecture notes in computer science: Vol. 4029. International conference on artificial intelligence and soft computing 2006 (pp. 499–508).
Dembczyński, K., Kotlowski, W., & Slowinski, R. (2009). Learning rule ensembles for ordinal classification with monotonicity constraints.
Fundamenta Informaticae,
94(2), 163–178.
MathSciNetMATH
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research,
7, 1–30.
MathSciNetMATH
Duivesteijn, W., & Feelders, A. (2008). Nearest neighbour classification with monotonicity constraints. In
Lecture notes in computer science: Vol. 5211.
Machine learning and knowledge discovery in databases (pp. 301–316). Berlin: Springer.
CrossRef
Fallah Tehrani, A., Cheng, W., Dembczynski, K., & Hüllermeier, E. (2011). Learning monotone nonlinear models using the Choquet integral. In Proceedings ECML/PKDD–2011, European conference on machine learning and principles and practice of knowledge discovery in databases, Athens, Greece.
Feelders, A. (2010). Monotone relabeling in ordinal classification. In
Proceedings of the 10th IEEE international conference on data mining (pp. 803–808). Washington: IEEE Computer Society.
CrossRef
Grabisch, M. (1995a). Fuzzy integral in multicriteria decision making.
Fuzzy Sets and Systems,
69(3), 279–298.
MathSciNetMATHCrossRef
Grabisch, M. (1995b). A new algorithm for identifying fuzzy measures and its application to pattern recognition. In Proceedings of IEEE international conference on fuzzy systems (Vol. 1, pp. 145–150). New York: IEEE.
Grabisch, M. (1997). k-order additive discrete fuzzy measures and their representation.
Fuzzy Sets and Systems,
92(2), 167–189.
MathSciNetMATHCrossRef
Grabisch, M. (2003). Modelling data by the Choquet integral. In Information fusion in data mining (pp. 135–148). Berlin: Springer.
Grabisch, M., & Nicolas, J. M. (1994). Classification by fuzzy integral: performance and tests.
Fuzzy Sets and Systems,
65(2–3), 255–271.
MathSciNetCrossRef
Grabisch, M., Murofushi, T., & Sugeno, M. (Eds.) (2000).
Fuzzy measures and integrals: theory and applications. Heidelberg: Physica.
MATH
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The WEKA data mining software: an update.
ACM SIGKDD Explorations Newsletter,
11(1), 10–18.
CrossRef
Hosmer, D., & Lemeshow, S. (2000).
Applied logistic regression (2nd ed.). New York: Wiley.
MATHCrossRef
Hüllermeier, E., & Fallah Tehrani, A. (2012a). Efficient learning of classifiers based on the 2-additive Choquet integral. In Computational intelligence in intelligent data analysis. Studies in computational intelligence. Springer, forthcoming.
Hüllermeier, E., & Fallah Tehrani, A. (2012b). On the VC dimension of the Choquet integral. In IPMU–2012, 14th international conference on information processing and management of uncertainty in knowledge-based systems, Catania, Italy.
Jaccard, J. (2001).
Interaction effects in logistic regression. Newbury Park: Sage Publications.
MATH
Kotłowski, W., Dembczyński, K., Greco, S., & Słowiński, R. (2008). Stochastic dominance-based rough set model for ordinal classification.
Information Sciences,
178(21), 3989–4204.
CrossRef
Landwehr, N., Hall, M., & Frank, E. (2003). Logistic model trees. In Proceedings of the 14th European conference on machine learning (pp. 241–252). Berlin: Springer.
Lee, S., Lee, H., Abbeel, P., & Ng, A. (2006). Efficient L1 regularized logistic regression. In Proceedings of the 21st national conference on artificial intelligence (pp. 401–408). Menlo Park: AAAI.
Modave, F., & Grabisch, M. (1998). Preference representation by a Choquet integral: commensurability hypothesis. In Proceedings of the 7th international conference on information processing and management of uncertainty in knowledge-based systems (pp. 164–171). Paris: Editions EDK.
Mori, T., & Murofushi, T. (1989). An analysis of evaluation model using fuzzy measure and the Choquet integral. In Proceedings of the 5th fuzzy system symposium (pp. 207–212). Japan Society for Fuzzy Sets and Systems.
Murofushi, T., & Soneda, S. (1993). Techniques for reading fuzzy measures (III): interaction index. In Proceedings of the 9th fuzzy systems symposium (pp. 693–696).
Potharst, R., & Feelders, A. (2002). Classification trees for problems with monotonicity constraints.
ACM SIGKDD Explorations Newsletter,
4(1), 1–10.
CrossRef
Sill, J. (1998). Monotonic networks. In Advances in neural information processing systems (pp. 661–667). Denver: MIT Press.
Sperner, E. (1928). Ein Satz über Untermengen einer endlichen Menge.
Mathematische Zeitschrift,
27(1), 544–548.
MathSciNetMATHCrossRef
Sugeno, M. (1974). Theory of fuzzy integrals and its application. Ph.D. thesis, Tokyo Institute of Technology.
Tibshirani, R. J., Hastie, T. J., & Friedman, J. (2001).
The elements of statistical learning: data mining, inference, and prediction. Berlin: Springer.
MATH
Torra, V. (2011). Learning aggregation operators for preference modeling. In Preference learning (pp. 317–333). Berlin: Springer.
Torra, V., & Narukawa, Y. (2007). Modeling decisions: information fusion and aggregation operators. Berlin: Springer.
Valiant, L. (1984). A theory of the learnable.
Communications of the ACM,
27(11), 1134–1142.
MATHCrossRef
Vapnik, V. (1998).
Statistical learning theory. New York: Wiley.
MATH
Vitali, G. (1925). Sulla definizione di integrale delle funzioni di una variabile.
Annali Di Matematica Pura Ed Applicata,
2(1), 111–121.
MathSciNetCrossRef