Ando, R. K., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data.
JMLR,
6, 1817–1953.
MathSciNet
Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Cortes, C., & Mohri, M. (2009). Polynomial semantic indexing. In Advances in neural information processing systems (NIPS 2009).
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online passive-aggressive algorithms.
Journal of Machine Learning Research,
7, 551–585.
MathSciNet
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: a large-scale hierarchical image database. In IEEE conference on computer vision and pattern recognition.
Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J., & Zisserman, A. (2007). The PASCAL Visual Object Classes Challenge 2007 (VOC2007).
Fellbaum, C. (Ed.) (1998).
WordNet: An electronic lexical database. Cambridge: MIT Press.
MATH
Fergus, R., Weiss, Y., & Torralba, A. (2009). Semi-supervised learning in gigantic image collections. In Advances in neural information processing systems, 2009.
Grangier, D., & Bengio, S. (2008). A discriminative kernel-based model to rank images from text queries.
Transactions on Pattern Analysis and Machine Intelligence,
30(8), 1371–1384.
CrossRef
Grauman, K., & Darrell, T. (2007). The pyramid match kernel: Efficient learning with sets of features. Journal of Machine Learning Research, 8(725–760), 7–8.
Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset (Technical Report 7694). California Institute of Technology.
Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C., Lear, I., & Kuntzmann, L. (2009). Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In ICCV.
Loeff, N., Farhadi, A., Endres, I., & Forsyth, D. (2009). Unlabeled data improves word prediction. In ICCV’09.
Makadia, A., Pavlovic, V., & Kumar, S. (2008). A new baseline for image annotation. In European conference on computer vision (ECCV).
Monay, F., & Gatica-Perez, D. (2004). PLSA-based image auto-annotation: constraining the latent space. In
Proceedings of the 12th annual ACM international conference on multimedia (pp. 348–351). New York: ACM.
CrossRef
Robbins, H., & Monro, S. (1951). A stochastic approximation method.
Annals of Mathematical Statistics,
22, 400–407.
MATHCrossRefMathSciNet
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B (Methodological),
58(1), 267–288.
MATHMathSciNet
Torralba, A., Fergus, R., & Freeman, W. T. (2008a). 80 million tiny images: a large dataset for non-parametric object and scene recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
30, 1958–1970.
CrossRef
Torralba, A. B., Fergus, R., & Weiss, Y. (2008b). Small codes and large image databases for recognition. In CVPR. Los Alamitos: IEEE Comput. Soc.
Usunier, N., Buffoni, D., & Gallinari, P. (2009). Ranking with ordered weighted pairwise classification. In L. Bottou, & M. Littman (Eds.), Proceedings of the 26th international conference on machine learning, Montreal, Omnipress, June 2009 (pp. 1057–1064).
Wang, J., Li, J., & Wiederholdy, G. (2000). SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. Advances in Visual Information Systems (pp. 171–193).
Wolpert, D. (1992). Stacked generalization.
Neural Networks,
5, 241–259.
CrossRef
Xia, F., Liu, T. Y., Wang, J., Zhang, W., & Li, H. (2008). Listwise approach to learning to rank: theory and algorithm. In Proceedings of the 25th international conference on machine learning.
Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average precision. In Proceedings of the 30th international ACM SIGIR conference on research and development in information retrieval (pp. 271–278).
Zhou, Z., Zhan, D., & Yang, Q. (1999/2007). Semi-supervised learning with very few labeled training examples. In Proceedings of the national conference on artificial intelligence (Vol. 22, p. 675). Menlo Park/Cambridge: AAAI Press/MIT Press.