Ben-David, S., Eiron, N., & Long, P. M. (2003). On the difficulty of approximately maximizing agreements.

*Journal of Computer and System Sciences*,

*66*(3), 496–514.

MATHCrossRefMathSciNet
Cohen, W., & Singer, Y. (1999). A simple, fast, and effective rule learner. In *Proceedings of the sixteenth national conference on artificial intelligence (AAAI-99)* (pp. 335–342). Menlo Park: AAAI Press.

De Raedt, L. D. (1997). Logical settings for concept-learning.

*Artificial Intelligence*,

*95*(1), 187–201.

MATHCrossRefMathSciNet
Friedman, J. H., & Popescu, B. E. (2005). *Predictive learning via rule ensembles* (Technical report). Stanford University.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

*Journal of the American Statistical Association*,

*58*, 13–30.

MATHCrossRefMathSciNet
Kearns, M. J., & Vazirani, U. V. (1994). *An introduction to computational learning theory*. Cambridge: MIT Press.

King, R., & Srinivasan, A. (1995). Relating chemical activity to structure: an examination of ILP successes. *New Generation Computing, Special issue on Inductive Logic Programming*, *13*(3–4), 411–434.

Kramer, S., Lavrac, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S. Dzeroski & N. Lavrac (Eds.), *Relational Data Mining* (pp. 262–291). Berlin: Springer.

Landwehr, N., Passerini, A., De Raedt, L., & Frasconi, P. (2006). kFOIL: Learning simple relational kernels. In *Proceedings of the twenty-first national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference*, Boston, Massachusetts, USA, 16–20 July 2006. Menlo Park: AAAI Press.

Li, H., Yap, C. W., Ung, C. Y., Xue, Y., Cao, Z. W., & Chen, Y. Z. (2005). Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods.

*Journal of Chemical Information and Modeling*,

*45*(5), 1376–1384.

CrossRef
McDiarmid, C. (1989). On the method of bounded differences. In *London mathematical society lecture note series*
*: Vol.* 141. *Surveys in combinatorics* (pp. 148–188). Cambridge: Cambridge Univ. Press.

Muggleton, S., Lodhi, H., Amini, A., & Sternberg, M. J. E. (2005). Support vector inductive logic programming. In A. G. Hoffmann, H. Motoda, & T. Scheffer (Eds.),

*Discovery science* (pp. 163–175). New York: Springer.

CrossRef
Popescul, A., & Ungar, L. (2003). Statistical relational learning for link prediction. In *IJCAI workshop on learning statistical models from relational data*.

Rückert, U., & Kramer, S. (2004). Frequent free tree discovery in graph data. In H. Haddad & A. Omicini (Eds.), *Proceedings of the ACM symposium on applied computing* (pp. 564–570). New York: ACM.

Rückert, U., & Kramer, S. (2006). A statistical approach to rule learning. In *Machine learning, proceedings of the twenty-third international conference (ICML 2006)* (pp. 785–792), Pittsburgh, Pennsylvania, USA, 25–29 June 2006. New York: ACM.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E., & King, R. D. (1996). Theories for mutagenicity: A study in first-order and feature-based induction.

*Artificial Intelligence*,

*85*(1–2), 277–299.

CrossRef
Woźnica, A., Kalousis, A., & Hilario, M. (2005). Kernels over relational algebra structures. In T. B. Ho, D. Cheung, & H. Liu (Eds.), *Lecture notes in computer science*
*: Vol.* 3518. *PAKDD* (pp. 588–598). Berlin: Springer.

Yoshida, F., & Topliss, J. (2000). QSAR model for drug human oral bioavailability.

*Journal of Medicinal Chemistry*,

*43*, 2575–2585.

CrossRef