1.

Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions.

*Journal of Symbolic Logic, 50*, 510–530.

CrossRef2.

Booth, R., & Meyer, T. (2006). Admissible and restrained revision. *Journal of Artificial Intelligence Research, 26*, 127–151.

3.

Boutilier, C. (1993). Revision sequences and nested conditionals. In R. Bajcsy (Ed.), *Proceedings of the thirteenth International Joint Conference on Artificial Intelligence (IJCAI’93)* (pp. 519–525).

4.

Cantwell, J. (1997). On the logic of small changes in hypertheories.

*Theoria, 63*, 54–89.

CrossRef5.

Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision.

*Artificial Intelligence, 89*, 1–29.

CrossRef6.

Fermé, E., & Rott, H. (2004). Revision by comparison.

*Artificial Intelligence, 157*, 5–47.

CrossRef7.

Field, H. (1980). *Science without numbers: A defence of nominalism*. Princeton/Oxford: Princeton University Press/Blackwell.

8.

Gärdenfors, P. (1988). *Knowledge in flux: Modeling the dynamics of epistemic states*. Cambridge: Bradford Books, MIT Press.

9.

Gärdenfors, P., & Makinson, D. (1988). Revisions of knowledge systems using epistemic entrenchment. In M. Vardi (Ed.), *TARK’88: Proceedings of the second conference on theoretical aspects of reasoning about knowledge* (pp. 83–95). Los Altos: Morgan Kaufmann.

10.

Goodman, N. (1955). *Fact, fiction, and forecast* (4th ed., 1983). Cambridge: Harvard University Press.

11.

Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia.

*Science, 306*(5695), 496–499.

CrossRef12.

Grove, A. (1988). Two modellings for theory change.

*Journal of Philosophical Logic, 17*, 157–170.

CrossRef13.

Hellman, G. (1989). *Mathematics without numbers: Towards a modal-structural interpretation*. Oxford: Clarendon Press.

14.

Hild, M., & Spohn, W. (2008). The measurement of ranks and the laws of iterated contraction.

*Artificial Intelligence, 172*, 1195–1218.

CrossRef15.

Konieczny, S., Medina Grespan, M., & Pino-Pérez, R. (2010). Taxonomy of improvement operators and the problem of minimal change. In F. Lin, U. Sattler, & M. Truszczynski (Eds.), *Principles of knowledge representation and reasoning: Proceedings of the twelfth international conference, KR 2010* (pp. 161–170). AAAI Press. Toronto, Canada, 9–13 May 2010.

16.

Konieczny, S., & Pino-Pérez, R. (2008). Improvement operators. In G. Brewka, & J. Lang (Eds.), *Principles of knowledge representation and reasoning: Proceedings of the eleventh international conference, KR 2008* (pp. 177–187). AAAI Press. Sydney, Australia, 16–19 September 2008.

17.

Levi, I. (2003). Contracting from epistemic hell is routine.

*Synthese, 135*, 141–164.

CrossRef18.

Lewis, D. (1973). *Counterfactuals* (2nd ed., 1986). Oxford: Blackwell.

19.

Lindström, S., & Rabinowicz, W. (1991). Epistemic entrenchment with incomparabilities and relational belief revision. In A. Fuhrmann, & M. Morreau (Eds.),

*The logic of theory change*.

*LNAI 465* (pp. 93–126). Berlin: Springer.

CrossRef20.

Nayak, A. (1994). Iterated belief change based on epistemic entrenchment.

*Erkenntnis, 41*, 353–390.

CrossRef21.

Nayak, A., Pagnucco, M., & Peppas, P. (2003). Dynamic belief revision operators.

*Artificial Intelligence, 146*, 193–228.

CrossRef22.

Olsson, E. J. (2003). Avoiding epistemic hell: Levi on pragmatism and consistency.

*Synthese, 135*, 119–140.

CrossRef23.

Pagnucco, M., & Rott, H. (1999). Severe withdrawal—and recovery. *Journal of Philosophical Logic, 28*, 501–547. (Correct, complete reprint with original pagination in the February 2000 issue; see publisher’s ‘Erratum’ (2000). *Journal of Philosophical Logic, 29*, 121).

24.

Papini, O. (2001). Iterated revision operations stemming from the history of an agent’s observations. In M.-A. Williams, & H. Rott (Eds.), *Frontiers in belief revision* (pp. 279–301). Dordrecht: Kluwer.

25.

Rott, H. (1991). A nonmonotonic conditional logic for belief revision I. In A. Fuhrmann, & M. Morreau (Eds.),

*The logic of theory change*.

*LNAI* (Vol. 465, pp. 135–181). Berlin: Springer-Verlag.

CrossRef26.

Rott, H. (2001). *Change, choice and inference: A study in belief revision and nonmonotonic reasoning*. Oxford: Oxford University Press.

27.

Rott, H. (2003). Basic entrenchment.

*Studia Logica, 73*, 257–280.

CrossRef28.

Rott, H. (2003). Coherence and conservatism in the dynamics of belief. Part II: Iterated belief change without dispositional coherence.

*Journal of Logic and Computation, 13*, 111–145.

CrossRef29.

Rott, H. (2006). Revision by comparison as a unifying framework: Severe withdrawal, irrevocable revision and irrefutable revision.

*Theoretical Computer Science, 355*, 228–242.

CrossRef30.

Rott, H. (2007). Bounded revision: Two-dimensional belief change between conservatism and moderation. In T. Rønnow-Rasmussen, B. Petersson, J. Josefsson, & D. Egonsson (Eds.),

*Hommage à Wlodek. philosophical papers dedicated to Wlodek Rabinowicz*. Lunds Universitet. Available at

http://www.fil.lu.se/hommageawlodek/site/papper/RottHans.pdf. Accessed 5 June 2011

31.

Rott, H. (2007). Two-dimensional belief change—an advertisement. In G. Bonanno, J. P. Delgrande, J. Lang, & H. Rott (Eds.),

*Formal models of belief change in rational agents*. IBFI, Schloss Dagstuhl. Available at

http://drops.dagstuhl.de/opus/volltexte/2007/1240. Accessed 5 June 2011

32.

Rott, H. (2009). Shifting priorities: Simple representations for twenty-seven iterated theory change operators. In D. Makinson, J. Malinowski, & H. Wansing (Eds.), *Towards mathematical philosophy*. *Trends in Logic* (pp. 269–296). Berlin: Springer Verlag.

33.

Segerberg, K. (1998). Irrevocable belief revision in dynamic doxastic logic.

*Notre Dame Journal of Formal Logic, 39*, 287–306.

CrossRef34.

Spohn, W. (1988). Ordinal conditional functions: A dynamic theory of epistemic states. In W. Harper, & B. Skyrms (Eds.), *Causation in decision, belief change, and statistics* (pp. 105–134). Dordrecht: Kluwer.