, Volume 41, Issue 2, pp 287-316
Date: 09 Nov 2010

Completeness of S4 for the Lebesgue Measure Algebra

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We prove completeness of the propositional modal logic S4 for the measure algebra based on the Lebesgue-measurable subsets of the unit interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based semantics for the standard propositional modal language with Boolean connectives and necessity and possibility operators, \(\Box\) and \(\Diamond\) . Propositional modal formulae are assigned to Lebesgue-measurable subsets of the real interval [0, 1], modulo sets of measure zero. Equivalence classes of Lebesgue-measurable subsets form a measure algebra, \(\mathcal M\) , and we add to this a non-trivial interior operator constructed from the frame of ‘open’ elements—elements in \(\mathcal M\) with an open representative. We prove completeness of the modal logic S4 for the algebra \(\mathcal M\) . A corollary to the main result is that non-theorems of S4 can be falsified at each point in a subset of the real interval [0, 1] of measure arbitrarily close to 1. A second corollary is that Intuitionistic propositional logic (IPC) is complete for the frame of open elements in \(\mathcal M\) .