Higher-Order and Symbolic Computation

, Volume 21, Issue 1, pp 193–234

Totally correct logic program transformations via well-founded annotations


DOI: 10.1007/s10990-008-9024-6

Cite this article as:
Pettorossi, A. & Proietti, M. Higher-Order Symb Comput (2008) 21: 193. doi:10.1007/s10990-008-9024-6


We address the problem of proving the total correctness of transformations of definite logic programs. We consider a general transformation rule, called clause replacement, which consists in transforming a program P into a new program Q by replacing a set Γ1 of clauses occurring in P by a new set Γ2 of clauses, provided that Γ1 and Γ2 are equivalent in the least Herbrand model M(P) of the program P.

We propose a general method for proving that transformations based on clause replacement are totally correct, that is, M(P)=M(Q). Our method consists in showing that the transformation of P into Q can be performed by: (i) adding extra arguments to predicates, thereby deriving from the given program P an annotated program \(\overline{P}\) , (ii) applying a variant of the clause replacement rule and transforming the annotated program \(\overline{P}\) into a terminating annotated program \(\overline{Q}\) , and (iii) erasing the annotations from \(\overline{Q}\) , thereby getting Q.

Our method does not require that either P or Q are terminating and it is parametric with respect to the annotations. By providing different annotations we can easily prove the total correctness of program transformations based on various versions of the popular unfolding, folding, and goal replacement rules, which can all be viewed as particular cases of our clause replacement rule.


Program transformation rulesLogic programmingPartial and total correctnessWell-founded orderings

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.DISPUniversity of Roma Tor VergataRomaItaly
  2. 2.IASI-CNRRomaItaly