1.

Aho, A., Hopcroft, J., and Ullman, J.

*Design and Analysis of Computer Algorithms*. Addison-Wesley, Reading, MA, 1974.

Google Scholar2.

Aho, A.V., Sethi, R., and Ullman, J.D. *Compilers: Principles, Techniques, and Tools*. Addison Wesley, 1988.

3.

Birkhoff, G.

*Lattice Theory*. American Mathematical Society, Providence, 1966.

Google Scholar4.

Bloom, B. Ready simulation, bisimulation, and the semantics of CCS-like languages. PhD thesis, Massachusets Institute of Technology, 1989.

5.

Burke, M. An interval-based approach to exhaustive and incremental interprocedural data-flow analysis.

*ACM Transactions on Programming Languages and Systems*,

**12**(3) (1990) 341–395.

CrossRefGoogle Scholar6.

Cai, J. Fixed point computation and transformational programming. Technical Report DCS-TR-217, The State University of New Jersey, Rutgers, 1987. PhD. Thesis.

7.

Cai, J. and Paige, R. Binding performance at language design time. In *Proc. Fourteenth ACM Symp. on Principles of Programming Languages*, Jan. 1987, pp. 85–97.

8.

Cai, J. and Paige, R. Program derivation by fixed point computation.

*Science of Computer Programming*,

**11** (1988/89) 197–261.

CrossRefGoogle Scholar9.

Chase, D.R., Wegman, M., and Zadeck, F.K. Analysis of pointers and structures. In *SIGPLAN’90 Conference on Programming Language Design and Implementation*, 1990, pp. 296–310.

10.

Choi, J.D., Burke, M., and Carini, P. Automatic construction of sparse data flow evaluation graphs. In *18th Annual ACM Symposium on Principles of Programming Languages*, 1991, pp. 55–66.

11.

Choi, J.D., Burke, M., and Carini, P. Efficient flow-sensitive interprocedural computation of pointer-induced aliases and side-effects. In *20th SIGACT-SIGPLAN ACM Symposium on the Principles of Programming Languages*, 1993, pp. 232–245.

12.

Choi, J.D. Gupta, M. Serrano, M., Sreedhar, V.C., and Midkiff, S. Escape analysis for Java. In *Conference on Object-Oriented Programming Systems, Languages, and Applications*, Nov. 1999.

13.

Cousot, P. Asynchronous iterative methods for solving a fixed point system of monotone equations in a complete lattice. Res. rep. R.R. 88, Laboratoire IMAG, Université scientifique et médicale de Grenoble, Grenoble, France, Sep. 1977. 15 p.

14.

Dewar, R., Grand, A., Liu, S., and Schwartz, J. Programming by refinement, as exemplified by the SETL representation sublanguage.

*TOPLAS*,

**1**(1) (1979) 27–49.

CrossRefGoogle Scholar15.

Driscoll, J.R., Sarnak, N., Sleator, D.D., and Tarjan, R.E. Making data structures persistent. *Journal of Computer and System Sciences*, **38**(1) (1989).

16.

Earley, J. High level iterators and a method for automatically designing data structure representation.

*J. of Computer Languages*,

**1**(4) (1976) 321–342.

CrossRefGoogle Scholar17.

Goyal, D. A language-theoretic approach to algorithms. PhD thesis, Computer Science Department, New York University, January 2000. available at

http://cs.nyu.edu/deepak/ThinThesis.ps.

18.

Hind, M. Pointer analysis: Haven’t we solved this problem yet? In *2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE’01)*, Snowbird, Utah, June 2001.

19.

Hind, M., Burke, M., Carini, P., and Choi, J.D. Interprocedural pointer alias analysis.

*ACM TOPLAS*,

**21**(4) (1999) 848–894.

CrossRefGoogle Scholar20.

Horwitz, S., Pfeiffer, P., and Reps, T. Dependence analysis for pointer variables. In *Programming Language Design and Implementation*, 1989, pp. 28–40.

21.

Kam, J.B. and Ullman, J.D. Monotone data flow analysis frameworks.

*Acta Informatica*,

**7** (1977) 305–317.

CrossRefGoogle Scholar22.

Kildall, G.A. A unified approach to global program optimization. In *ACM Symp. on Principles of Prog. Lang.*, 1973, pp. 194–206.

23.

Landi, W. Undecidability of static analysis.

*ACM Letters on Programming Languages and Systems*,

**1**(4) (1992) 323–337.

CrossRefGoogle Scholar24.

Larus, J.R. and Hilfinger, P.N. Detecting conflicts between structure accesses. In *Programming Language Design and Implementation*, 1988, pp. 21–34.

25.

Lassez, J.-L., Nguyen, V.L., and Sonenberg, L. Fixed point theorems and semantics: A folk tale.

*Information Processing Letters*,

**14**(3) (1982) 112–116.

CrossRefGoogle Scholar26.

Paige, R. Formal differentiation: A program synthesis technique. UMI Research Press, 1981. Revision of Ph.D. thesis, NYU, Jun 1979.

27.

Paige, R. and Koenig, S. Finite differencing of computable expressions.

*ACM Trans. on Programming Languages and Systems*,

**4**(3) (1982) 401–454.

Google Scholar28.

Paige, R., Tarjan, R., and Bonic, R. A linear time solution to the single function coarsest partition problem.

*Theoretical Computer Science*,

**40**(1) (1985) 67–84.

CrossRefGoogle Scholar29.

Ramalingam, G. The undecidability of aliasing.

*ACM Transactions on Programming Languages and Systems*,

**16**(6) (1994) 1467–1471.

CrossRefGoogle Scholar30.

Schonberg, E., Schwartz, J., and Sharir, M. An automatic technique for selection of data representations in SETL programs.

*ACM TOPLAS*,

**3**(2) (1981) 126–143.

CrossRefGoogle Scholar31.

Schwartz, J.

*On Programming: An Interim Report on the SETL Project, Installments I and II*. New York University, New York, 1974.

Google Scholar32.

Schwartz, J., Dewar, R., Dubinsky, E., and Schonberg, E.

*Programming with Sets: An Introduction to SETL*. Springer-Verlag, New York, 1986.

Google Scholar33.

Steensgaard, B. Points-to analysis in almost linear time. In *23rd SIGACT-SIGPLAN ACM Symposium on the Principles of Programming Languages*, 1996, pp. 32–41.

34.

Suppes, P. *Axiomatic Set Theory*. Dover, 1972.

35.

Tarski, A. A lattice-theoretical fixpoint theorem and its application.

*Pacific J. of Mathematics*,

**5** (1955) 285–309.

Google Scholar