Research Article

Linguistics and Philosophy

, Volume 33, Issue 6, pp 447-477

First online:

Proof-theoretic semantics for a natural language fragment

  • Nissim FrancezAffiliated withComputer Science Department, the Technion-IIT Email author 
  • , Roy DyckhoffAffiliated withSchool of Computer Science, University of St Andrews

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The paper presents a proof-theoretic semantics (PTS) for a fragment of natural language, providing an alternative to the traditional model-theoretic (Montagovian) semantics (MTS), whereby meanings are truth-condition (in arbitrary models). Instead, meanings are taken as derivability-conditions in a “dedicated” natural-deduction (ND) proof-system. This semantics is effective (algorithmically decidable), adhering to the “meaning as use” paradigm, not suffering from several of the criticisms formulated by philosophers of language against MTS as a theory of meaning. In particular, Dummett’s manifestation argument does not obtain, and assertions are always warranted, having grounds of assertion. The proof system is shown to satisfy Dummett’s harmony property, justifying the ND rules as meaning conferring. The semantics is suitable for incorporation into computational linguistics grammars, formulated in type-logical grammar.


Proof-theoretic semantics Natural language Harmony Natural deduction