Linguistics and Philosophy

, Volume 32, Issue 1, pp 95–114

A semantic constraint on binary determiners

Authors

Research Article

DOI: 10.1007/s10988-009-9053-6

Cite this article as:
Zuber, R. Linguist and Philos (2009) 32: 95. doi:10.1007/s10988-009-9053-6

Abstract

A type \({\langle{1^2, 1}\rangle}\) quantifier F is symmetric iff F(X, X)(Y) = F(Y, Y)(X). It is shown that quantifiers denoted by irreducible binary determiners in natural languages are both conservative and symmetric and not only conservative.

Keywords

Binary determinersHigher type quantifiersSymmetryLanguage universals

Copyright information

© Springer Science+Business Media B.V. 2009