Skip to main content

Advertisement

Log in

Cumulative patterns of logging and fire (1940–2009): consequences on the structure of the eastern Canadian boreal forest

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Although logging has affected circumboreal forest dynamics for nearly a century, very few studies have reconstructed its influence on landscape structure at the subcontinental scale.

Objectives

This study aims to document spatiotemporal patterns of logging and fire since the introduction of logging in the early twentieth-century, and to evaluate the effects of these disturbances on landscape structure.

Methods

We used historical (1940–2009) logging and fire maps to document disturbance patterns across a 195,000-km2 boreal forest landscape of eastern Canada. We produced multitemporal (1970s–2010s) mosaics providing land cover status using Landsat imagery.

Results

Logging significantly increased the rate of disturbance (+74 %) in the study area. The area affected by logging increased linearly with time resulting in a significant rejuvenation of the landscape along the harvesting pattern (south–north progression). From 1940 to 2009, fire was the dominant disturbance and showed a more random spatial distribution than logging. The recent increase of fire influence and the expansion of the proportion of area classified as unproductive terrestrial land suggest that regeneration failures occurred.

Conclusions

This study reveals how logging has modified the disturbances dynamics, following the progression of the logging frontier. Future management practices should aim for a dispersed spatial distribution of harvests to generate landscape structures that are closer to natural conditions, in line with ecosystem-based management. The challenges of defining sustainable practices will remain complex with the predicted increase in fire frequency, since this factor, in combination with logging, can alter both the structure and potentially the resilience of boreal forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Axelsson AL, Östlund L, Hellberg E (2002) Changing deciduous tree distributions in a Swedish boreal landscape, 1820-1999: implications for restoration strategies. Landscape Ecol 17:403–418

    Article  Google Scholar 

  • Bélisle AC, Gauthier S, Cyr D, Bergeron Y, Morin H (2012) Fire regime and old-growth boreal forests in central Quebec, Canada: an ecosystem management perspective. Silva Fenn 45:889–908

    Google Scholar 

  • Bergeron Y, Cyr D, Girardin MP, Carcaillet C (2010) Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. Int J Wildland Fire 19:1127–1139

    Article  Google Scholar 

  • Bouchard M, Pothier D (2011) Long-term influence of fire and harvesting on boreal forest age structure and forest composition in eastern Québec. For Ecol Manag 261:811–820

    Article  Google Scholar 

  • Bouchard M, Pothier D, Gauthier S (2008) Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Can J For Res 38:1621–1633

    Article  Google Scholar 

  • Boucher D, De Grandpré L, Kneeshaw D, St-Onge B, Ruel JC, Waldron K, Lussier JM (2015) Effects of 80 years of forest management on landscape structure and pattern in the eastern Canadian boreal forest. Landscape Ecol 30:1913–1929

    Article  Google Scholar 

  • Boucher Y, Bouchard M, Grondin P, Tardif P (2011) Le registre des états de référence: intégration des connaissances sur la structure, la composition et la dynamique des paysages forestiers naturels du Québec méridional. Mémoire de recherche forestière n° 161 Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière, Québec

  • Boucher Y, Grondin P (2012) Impact of logging and natural stand-replacing disturbances on high-elevation boreal landscape dynamics (1950-2005) in eastern Canada. For Ecol Manag 263:229–239

    Article  Google Scholar 

  • Boucher Y, Grondin P, Auger I (2014) Land use history (1840–2005) and physiography as determinants of southern boreal forests. Landscape Ecol 29:437–450

    Article  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–545

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensing data: principles and practices. Lewis Publishers, Boca Raton

    Google Scholar 

  • Côté D (1999) Histoire de l’industrie forestière du Saguenay–Lac-Saint-Jean: au cœur de l’industrie régionale depuis plus de 150 ans, 1838-1988. Société d’histoire du Lac-Saint-Jean, Alma

    Google Scholar 

  • Côté D, Girard F, Hébert F, Bouchard S, Gagnon R, Lord D (2013) Is the closed-crown boreal forest resilient after successive stand disturbances? A quantitative demonstration from a case study. J Veg Sci 24:664–674

    Article  Google Scholar 

  • Crutzen PJ, Steffen W (2003) How long have we been in the Anthropocene era? Clim Change 61:251–257

    Article  Google Scholar 

  • Cyr D, Gauthier S, Bergeron Y, Carcaillet C (2009) Forest management is driving the eastern North American boreal forest outside its natural range of variability. Front Ecol Environ 7:519–524

    Article  Google Scholar 

  • Drapeau P, Leduc A, Kneeshaw D, Gauthier S (2009) An adaptive framework for monitoring ecosystem management in the boreal black spruce forest. In: Gauthier S, Vaillancourt M-A, Leduc A, De Grandpre L, Kneeshaw DD, Morin H, Drapeau P, Bergeron Y (eds) Ecosystem management in the boreal forest. Presses de l’Université du Québec, Québec, p 343

    Google Scholar 

  • Fedrowitz K, Koricheva J, Baker SC, Lindenmayer DB, Palik B, Rosenvald R, Beese W, Franklin JF, Kouki J, Macdonald E, Messier C, Sverdrup-Thygeson A, Gustafsson L (2014) Can retention forestry help conserve biodiversity? A meta-analysis. J Appl Ecol 51:1669–1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:510–514

    Article  Google Scholar 

  • Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822

    Article  CAS  PubMed  Google Scholar 

  • Gauthier S, Leduc A, Bergeron Y, Le Goff H (2009) Fire frequency and forest management based on natural disturbances. In: Gauthier S, Vaillancourt M-A, Leduc A, De Grandpre L, Kneeshaw DD, Morin H, Drapeau P, Bergeron Y (eds) Ecosystem management in the boreal forest. Presses de l’Université du Québec, Québec, p 55

    Google Scholar 

  • Girard F, Payette S, Gagnon R (2008) Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. J Biogeogr 35:529–537

    Article  Google Scholar 

  • Girard F, Payette S, Gagnon R (2009) Origin of the lichen–spruce woodland in the closed-crown forest zone of eastern Canada. Glob Ecol Biogeogr 18:291–303

    Article  Google Scholar 

  • Hansen MC, Loveland TR (2012) A review of land area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74

    Article  Google Scholar 

  • Healey SP, Cohen WB, Spies TA, Moeur M, Pflugmacher D, Whitley MG, Lefsky M (2008) The relative impact of harvest and fire upon landscape-level dynamics of older forests: lessons from the Northwest forest plan. Ecosystems 11:1106–1119

    Article  Google Scholar 

  • Hessburg PF, Churchill DJ, Larson AJ, Haugo RD, Miller C, Spies TA, North MP, Povak NA, Belote RT, Singleton PH, Gaines WL, Keane RE, Aplet GH, Stephens SL, Morgan P, Bisson PA, Rieman BE, Salter RB, Reeves GH (2015) Restoring fire-prone Inland Pacific landscapes: seven core principles. Landscape Ecol 30:1805–1835

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing. Prentice Hall, Upper Sadle River

    Google Scholar 

  • Johnson EA, Gutsell SL (1994) Fire frequency models, methods and interpretations. Adv Ecol Res 25:239–283

    Article  Google Scholar 

  • Judd RW (1989) Aroostook: a century of logging in northern Maine. University of Maine Press, Orono

    Google Scholar 

  • Kneeshaw DD, Gauthier S (2003) Old-growth in the boreal forest at stand and landscape levels. Environ Rev 11:s99–s114

    Article  Google Scholar 

  • Lavoie L, Sirois L (1998) Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada. J Veg Sci 9:483–492

    Article  Google Scholar 

  • Li F, Jupp DLB, Thankappan M, Lymburner L, Mueller N, Lewis A, Held A (2012) A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens Environ 124:756–770

    Article  Google Scholar 

  • Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131:433–445

    Article  Google Scholar 

  • Löfman S, Kouki J (2003) Scale and dynamics of a transforming forest landscape. For Ecol Manag 175:247–252

    Article  Google Scholar 

  • Lundmark H, Josefsson T, Östlund L (2013) The history of clear-cutting in northern Sweden: driving forces and myths in boreal silviculture. For Ecol Manag 307:112–122

    Article  Google Scholar 

  • Mansuy N, Gauthier S, Robitaille A, Bergeron Y (2010) The effects of surficial deposit–drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. Int J Wildland Fire 19:1083–1098

    Article  Google Scholar 

  • Ministère des Forêts, de la Faune et des Parcs (MFFP) (2016) Placettes-échantillon temporaires. Normes techniques. Direction des inventaires forestiers, Québec

    Google Scholar 

  • Munoz SE, Mladenoff DJ, Schroeder S, Williams JW (2014) Defining the spatial patterns of land use associated with the indigenous societies of eastern North America. J Biogeogr 41:2195–2210

    Article  Google Scholar 

  • Niklasson M, Granström A (2000) Numbers and sizes of fires: long term trends in a Swedish boreal landscape. Ecology 81:1484–1499

    Article  Google Scholar 

  • Nilsson C, Lepori F, Malmqvist B, Törnlund E, Hjerdt N, Helfield JM, Palm D, Östergren J, Jansson R, Brännäs E, Lundqvist H (2005) Forecasting environmental responses to restoration of rivers used as log floatways: an interdisciplinary challenge. Ecosystems 8:779–800

    Article  Google Scholar 

  • Nowacki GJ, Abrams MD (2015) Is climate an important driver of post-European vegetation change in the Eastern United States? Glob Chang Biol 21:314–334

    Article  PubMed  Google Scholar 

  • Östlund L (1993) Exploitation and structural changes in the north Swedish boreal forest 1800-1992. Ph.D. Thesis. Department of Forest Vegetation Ecology, Swedish University of Agricultural Sciences, Umeä

  • Östlund L, Zackrisson O, Axelsson AL (1997) The history and transformation of a Scandinavian boreal forest landscape since the nineteenth century. Can J For Res 27:1198–1206

    Article  Google Scholar 

  • Paine RT, Tegner MJ, Johnson EA (1998) Compounded perturbations yield ecological surprises. Ecosystems 1:535–545

    Article  Google Scholar 

  • Payette S (1992) Fire as a controlling process in the North American boreal forest. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, Cambridge

    Google Scholar 

  • Payette S, Bhiry N, Delwaide A, Simard M (2000) Origin of the lichen woodland at its southern range limit in eastern Canada: the catastrophic impact of insect defoliators and fire on the spruce-moss forest. Can J For Res 30:288–305

    Article  Google Scholar 

  • PCI Geomatics Inc (2007) PCI Geomatics. OrthoEngine 10.1. Richmond Hill

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org

  • Robitaille A, Saucier J-P (1998) Paysages régionaux du Québec méridional. Direction de la gestion des stocks forestiers et Direction des relations publiques, Ministère des Ressources Naturelles du Québec. Publication du Québec, Québec

  • Rowe JS (1972) Forest regions of Canada. Publ. No. 1300. Canadian Forestry Service, Ottawa

  • Spies TA, Ripple WJ, Bradshaw GA (1994) Dynamics and pattern of a managed coniferous forest landscape in Oregon. Ecol Appl 4:555–568

    Article  Google Scholar 

  • Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y (2013) Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35

    Article  PubMed  Google Scholar 

  • Törnlund E, Östlund L (2002) Floating timber in Northern Sweden: the construction of floatways and transformation of rivers. Environ Hist 8:85–106

    Article  Google Scholar 

  • Turner MG, Gardner RH (2015) Landscape disturbance dynamics. In: Turner MG, Gardner RH (eds) Landscape ecology in theory and practice. Springer, New York

    Chapter  Google Scholar 

  • Van Wagner CE (1978) Age-class distribution and the forest fire cycle. Can J For Res 8:220–227

    Article  Google Scholar 

  • Wulder MA, Nelson TA (2003) EOSD land cover classification legend report. Version 2. 2003. Natural Resources Canada, Canadian Forest Service, Victoria

  • Yang X, Lo CP (2000) Relative radiometric normalization performance for change detection from multi-date satellite images. Photogramm Eng Remote Sens 66:967–980

    Google Scholar 

  • Zackrisson O (1977) The influence of forest fires in the North Swedish boreal forest. Oikos 29:22–32

    Article  Google Scholar 

Download references

Acknowledgments

This study received financial support from Quebec’s Ministère des Forêts, de la Faune et des Parcs (Project No. 142332085) and the Université de Sherbrooke. We thank the initiative of the U.S. Geological Survey which provides open access of the Landsat archives. We also thank J. Noël, A. Leboeuf, J.-D. Sylvain, C. Loyer, J.-A. Langlois and M. Carrier for help with data and spatial analysis, as well as P. Jasinski and D. Tousignant for help with English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Boucher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boucher, Y., Perrault-Hébert, M., Fournier, R. et al. Cumulative patterns of logging and fire (1940–2009): consequences on the structure of the eastern Canadian boreal forest. Landscape Ecol 32, 361–375 (2017). https://doi.org/10.1007/s10980-016-0448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0448-9

Keywords

Navigation