Skip to main content

Advertisement

Log in

How do field margins contribute to the functional connectivity of insect-pollinated plants?

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Habitat fragmentation generates a loss of functional connectivity detrimental to the persistence of biodiversity. The French agricultural intensification initiated in the 1950s has caused a decline in field margins.

Objectives

As field margins may facilitate species dispersal while providing socio-economic benefits, it is of interest to assess their contribution to the functional connectivity of insect-pollinated plants in agro-ecosystems. This will help develop appropriate management strategies mitigating fragmentation.

Methods

We addressed this issue by studying the links between landscape structure and the patterns of abundance and pollen dispersal (using fluorescent dye particles) for two contrasted insect-pollinated plants occurring in field margins (Crepis sancta and Euphorbia serrata). We investigated the influence of field margins quality and of the surrounding matrix on pollen dispersal and compared the relevance of the least-cost algorithm with a straight-line approach to depict pollinators’ movements.

Results

The influence of landscape structure on plant abundance is species and scale-specific. Pollen dispersal decreases with distance from the source. For E. serrata, it was preferentially dispersed via field margins, confirming the relevance of the least-cost algorithm, while C. sancta dispersal followed a straight-line.

Conclusions

Euphorbia serrata, which grows strictly on field margins with a greater dispersal ability and a more diversified pollinator guild than C. sancta, is less affected by land-use changes. Our study demonstrates the contrasting contributions of field margins to pollen dispersal as they may act as functional corridors favouring pollinators’ movement depending on the species of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Adriaensen F, Githiru M, Mwang’ombe J, Matthysen E, Lens L (2007) Restoration and increase of connectivity among fragmented forest patches in the Taita Hills, South-East Kenya. CEPF Project 1095347968, University of Ghent, Ghent, Belgium

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2012) Individual dispersal, landscape connectivity and ecological networks. Biol Rev Cambr Philos Soc 88:310–326

    Article  Google Scholar 

  • Baiges JC, Blanché C (1991) Morphologie des graines des espèces ibéro-baléariques du genre Euphorbia L. (Euphorbiaceae) II—Subgen. Esula Pers. I. Bull Soc Bot Fr 138(4-5):321–327. doi:10.1080/01811797.1991.10824934

    Google Scholar 

  • Barbaro L, Rossi JP, Vetillard F, Nezan J, Jactel H (2007) The spatial distribution of birds and carabid beetles in pine plantation forests: the role of landscape composition and structure. J Biogeogr 34:652–664

    Article  Google Scholar 

  • Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • Bergerot B, Tournant P, Moussus JP, Stevens VM, Julliard R, Baguette M, Foltête JC (2013) Coupling inter-patch movement models and landscape graph to assess functional connectivity. Popul Ecol 55:193–203

    Article  Google Scholar 

  • Biau O, Chauvot N (2014) 2007–2012: la croissance démographique ralentit. Insee Flash Provence Alpes Côte d’Azur 9:1–2

    Google Scholar 

  • Boussard H, Baudry J (2014) Chloe212: a software for landscape pattern analysis. http://www.rennes.inra.fr/sad/Outils-Produits/Outils-informatiques/Chloe

  • Brennan TS, Schnell GD (2005) Relationship between bird abundances and landscape characteristics: the influence of scale. Environ Monit Assess 105:209–228

    Article  PubMed  Google Scholar 

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278

    Article  Google Scholar 

  • Burel F, Baudry J (1999) Ecologie du paysage. Concepts, méthodes et applications. Tec & Doc Lavoisier, Paris

    Google Scholar 

  • Burnham K, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison shoppers’ guide to connectivity metrics: trading off between data requirements and information content. Front Ecol Environ 2:529–536

    Article  Google Scholar 

  • CETE (2013) Continuités écologiques en milieu agricoles. Connaissances, expériences et éléments méthodologiques pour l’appui à la mise en œuvre. Zoom sur la région Provence Alpes Côtes d’Azur

  • Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecol 18:561–573

    Article  Google Scholar 

  • Cranmer L, McCollin D, Ollerton J (2012) Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121:562–568

    Article  Google Scholar 

  • ESRI (2013) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Etherington TR, Perry GLW, Cowan PE, Clout MN (2014) Quantifying the direct transfer costs of common brushtail possum dispersal using least-cost modelling: a combined cost-surface and accumulated-cost dispersal kernel approach. PLoS ONE 9(2):e88293

    Article  PubMed  PubMed Central  Google Scholar 

  • Ethier K, Fahrig L (2011) Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landscape Ecol 26:865–876

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Conserv 100:125–136

    Article  Google Scholar 

  • Foley CJ, Holland JD (2010) Do flying beetles perceive human-dominated landscapes as complex mosaics or binary patterns? Landsc Online 16:1–18

    Article  Google Scholar 

  • Fried G, Petit S, Dessaint F, Reboud X (2009) Arable weed decline in Northern France: crop edges as refugia for weed conservation? Biol Conserv 142:238–243

    Article  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    Article  PubMed  Google Scholar 

  • Grashof-Bokdam C, van Langevelde F (2005) Green veining: landscape determinants of biodiversity in European agricultural landscapes. Landscape Ecol 20(4):417–439

    Article  Google Scholar 

  • Guende G, Olivier L (1993) Les mesures de sauvegarde et de gestion des plantes messicoles du Parc Naturel Régional du Luberon. In: Dalmas JP (ed) Faut-il sauver les mauvaises herbes?. Conservatoire de Gap-Charance, Gap, pp 179–188

    Google Scholar 

  • Hadley AS, Betts MG (2011) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev 87:526–544

    Article  PubMed  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Imbert E (2001) Historique de Crepis sancta (L.) Babc. dans la flore française. Soc Bot Fr 16:33–39

    Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  PubMed  Google Scholar 

  • Koen E, Bowman J, Walpole AA (2012) The effect of cost surface parametrization on landscape resistance estimates. Mol Ecol Resour 12:686–696

    Article  PubMed  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou JP, Trommetter M (2008) Agriculture et biodiversité. Valoriser les synergies. Expertise scientifique collective, synthèse du rapport. INRA, Paris

    Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Liston AD, Knight GT, Heibo E, Bland KP, Barstad TE, Blank SM, Boevé JL, Fiedler C, Grearson KJ, Halstead A, Jacobs HJ, Jansen E, Lønnve O, Prous M, Robinson J, Taeger A (2012) On Scottish sawflies, with results of the 14th International Sawfly Workshop, in the southern Highlands, 2010. Beitr Entomol 62:1–68

    Google Scholar 

  • Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Meyer-Vale A (2012) Etude relative au foncier agricole en Sud Luberon. Pôle Territoire, Eau, Environnement, Chambre d’agriculture Vaucluse, France

  • Nagasaka K (1992) Movement patterns of three Athalia sawflies in relation to the spatio-temporal distributions of their habitats. Res Popul Ecol 34:1–14

    Article  Google Scholar 

  • Petit R, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin G (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rayfield B, Fortin MJ, Fall A (2010) The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecol 25:519–532

    Article  Google Scholar 

  • Saatkamp A, Dutoit T, Roche P (2007) La flore du vignoble du pays d’Aigues: d’un espace méconnu à la biologie de ses espèces. Courr Sci Parc Nat Reg Luberon 8:56–76

    Google Scholar 

  • Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. Proc R Soc Lond B 270:569–575

    Article  Google Scholar 

  • Stevens VM, Leboulengé E, Wesselingh RA, Baguette M (2006) Quantifying functional connectivity: experimental assessment of boundary permeability for the natterjack toad (Bufo calamita). Oecologia 150:161–171

    Article  PubMed  Google Scholar 

  • Stevenson CD, Ferryman M, Nevin OT, Ramsey AD, Bailey S, Watts K (2013) Using GPS telemetry to validate least-cost modeling of gray squirrel (Sciurus carolinensis) movement within a fragmented landscape. Ecol Evol 3(7):2350–2361

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe OL, Bakkestuen V, Fry G, Stabbetorp OE (2003) Modelling the benefits of farmland restoration: methodology and application to butterfly movement. Landsc Urban Plan 63:15–31

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99:12923–12926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  • Townsend PA, Levey DJ (2005) An experimental test of whether habitat corridors affect pollen transfer. Ecology 86:466–475

    Article  Google Scholar 

  • Tscharntke T, Rand TA, Bianchi FJJA (2005) The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann Zool Fenn 42(4):421–432

    Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Van Geert A, Van Rossum F, Triest L (2010) Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J Ecol 98:178–187

    Article  Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard JM, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14

    Article  Google Scholar 

  • Verbeylen G, Bruyn LD, Adriaensen F, Matthysen E (2003) Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecol 18:791–805

    Article  Google Scholar 

  • Williams NM, Kremen C (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl 17:910–921

    Article  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797

    Article  Google Scholar 

  • Zurbuchen A, Cheesman S, Klaiber J, Müller A, Hein S, Dorn S (2010) Long foraging distances impose high costs on offspring production in solitary bees. J Anim Ecol 79:674–681

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Luberon Natural Regional Park (Ref. PNRL1803/OA14AVHRXT). We would like to thank Arne Saatkamp for useful comments on the manuscript and Michael Paul for greatly improving the English of this paper (Ref. 4500180790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clémence Guiller.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (Docx 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guiller, C., Affre, L., Albert, C.H. et al. How do field margins contribute to the functional connectivity of insect-pollinated plants?. Landscape Ecol 31, 1747–1761 (2016). https://doi.org/10.1007/s10980-016-0359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0359-9

Keywords

Navigation