Skip to main content

Advertisement

Log in

Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data

  • Research article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Subtropical forest loss resulting from conversion of forest to other land-cover types such as grassland, secondary forest, subsistence crop farms and small forest patches affects leaf nitrogen (N) stocks in the landscape. This study explores the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new space-borne multispectral sensor. RapidEye consists of five spectral bands in the visible to near infra-red (NIR) and has a spatial resolution of 5 m. MERIS terrestrial chlorophyll index derived from the RapidEye explained 50 % of the variance in leaf N across different land-cover types with a model standard error of prediction of 29 % (i.e. of the observed mean leaf N) when assessed on an independent test data. The results showed that indigenous forest fragmentation leads to significant losses in leaf N as most of the land-cover types (e.g. grasslands and subsistence farmlands) resulting from forest degradation showed lower leaf N when compared to the original indigenous forest. Further analysis of the spatial variation of leaf N revealed an autocorrelation distance of about 50 m for leaf N in the fragmented landscape, a scale corresponding to the average dimension of subsistence fields (2,781 m2) in the region. The availability of new multispectral sensors such as RapidEye thus, moves remote sensing closer to widespread monitoring of the effect of tropical forest degradation on leaf N distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard F, Eva HD, Mayaux P, Stibig HJ, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Glob Biogeochem Cycles 18:GB2008

    Article  Google Scholar 

  • Billings S, Gaydess E (2008) Soil nitrogen and carbon dynamics in a fragmented landscape experiencing forest succession. Landscape Ecol 23:581–593

    Article  Google Scholar 

  • Boegh E, Soegaard H, Broge N, Hasager CB, Jensen NO, Schelde K, Thomsen A (2002) Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens Environ 81:179–193

    Article  Google Scholar 

  • Cho MA, Skidmore AK (2006) A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ 101:181–193

    Article  Google Scholar 

  • Cho MA, van Aardt J, Main R, Majeke B (2010a) Evaluation of variations of physiology-based hyperspectral features along a soil water gradient in Eucalyptus grandis plantation. Int J Remote Sens 31(12):3143–3159

    Article  Google Scholar 

  • Cho MA, Debba P, Mathieu R, Naidoo L, Van Aardt J, Asner GP (2010b) Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: canopy-level analysis. IEEE Trans Geosci Remote Sens 48(2):4133–4142

    Google Scholar 

  • Conese C, Maselli F (1992) Use of error matrices to improve area estimates with maximum likelihood classification procedures. Remote Sens Environ 40:113–124

    Article  Google Scholar 

  • Coops NC, White JD, Scott NA (2004) Estimating fragmentation effects on simulated forest net primary productivity derived from satellite imagery. Int J Remote Sens 25:819–838

    Article  Google Scholar 

  • Curran PJ (1989) Remote sensing of foliar chemistry. Remote Sens Environ 30(3):271–278

    Article  Google Scholar 

  • Curran PJ (2001) Imaging spectrometry for ecological applications. JAG 3:305–312

    Google Scholar 

  • Curran PJ, Dungan JL, Peterson DL (2001) Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sens Environ 76:349–359

    Article  Google Scholar 

  • Dash J, Curran PJ (2007) Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv Space Res 39:100–104

    Article  CAS  Google Scholar 

  • Datt B (1998) Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a & b and total carotenoid content in Eucalyptus leaves. Remote Sens Environ 66:111–121

    Article  Google Scholar 

  • Datt B (1999) Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int J Remote Sens 20:2741–2759

    Article  Google Scholar 

  • Davidson EA, Reis de Carvalho CJ, Vieira ICG, Figueiredo R, Moutinho P, Ishida FY, Primo dos Santos MT, Guerrero JB, Kalif K, Sabá RT (2004) Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol Appl 14:150–163

    Article  Google Scholar 

  • DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci USA 99:14256–14261

    Article  PubMed  CAS  Google Scholar 

  • Duguay S, Eigenbrod F, Fahrig L (2007) Effects of surrounding urbanization on non-native flora in small forest patches. Landscape Ecol 22:589–599

    Article  Google Scholar 

  • Fearnside PM, Laurance WF (2004) Tropical deforestation and greenhouse-gas emissions. Ecol Appl 14:982–986

    Article  Google Scholar 

  • Garrigues S, Allard D, Baret F, Weiss M (2006) Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sens Environ 103:81–96

    Article  Google Scholar 

  • Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecol 13(4):263–268

    Article  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:1–13

    Google Scholar 

  • Giertz S, Junge B, Diekkrüger B (2005) Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys Chem Earth Parts A/B/C 30:485–496

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18:2691–2697

    Article  Google Scholar 

  • Greenland DJ, Kowal JML (1960) Nutrient content of the moist tropical forest of Ghana. Plant Soil 12:154–173

    Article  CAS  Google Scholar 

  • Groffman PM, Turner CL (1995) Plant productivity and nitrogen gas fluxes in a tallgrass prairie landscape. Landscape Ecol 10(5):255–266

    Article  Google Scholar 

  • Groom G, Mücher C, Ihse M, Wrbka T (2006) Remote sensing in landscape ecology: experiences and perspectives in a European context. Landscape Ecol 21:391–408

    Article  Google Scholar 

  • Herrera J, García D, Morales J (2011) Matrix effects on plant-frugivore and plant-predator interactions in forest fragments. Landscape Ecol 26:125–135

    Article  Google Scholar 

  • Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. Int J Remote Sens 4:273–288

    Article  Google Scholar 

  • Huang W, Wang J, Wang Z, Zhaochun J, Wang J (2004) Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance. Int J Remote Sens 25:2409–2419

    Article  Google Scholar 

  • Iverson LR, Graham RL, Cook EA (1989) Applications of satellite remote sensing to forested ecosystems. Landscape Ecol 3:131–143

    Article  Google Scholar 

  • Jupp DLB, Strahler AH, Woodcock CE (1988) Autocorrelation and regularisation in digital images. I. Basic theory. IEEE Trans Geosci Remote Sens 26:463–473

    Google Scholar 

  • Kokaly RF, Clark RN (1999) Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens Environ 67:267–287

    Article  Google Scholar 

  • Lauga J, Joachim J (1992) Modelling the effects of forest fragmentation on certain species of forest-breeding birds. Landscape Ecol 6:183–193

    Article  Google Scholar 

  • Leakey RRB, Simons AJ (1998) The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. Agrofor Syst 38:165–176

    Article  Google Scholar 

  • Lizée M-H, Manel S, Mauffrey J-F, Tatoni T, Deschamps-Cottin M (2012) Matrix configuration and patch isolation influences override the species-area relationship for urban butterfly communities. Landsc Ecol 27:159–169

    Article  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    Article  PubMed  Google Scholar 

  • Matson P, Johnson L, Billow C, Miller J, Pu R (1994) Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecol Appl 4:280–298

    Article  Google Scholar 

  • May FE, Ash JE (1990) An assessment of the allelopathic potential of Eucalyptus. Aust J Bot 38:245–254

    Article  Google Scholar 

  • McDonald MA, Healey JR, Stevens PA (2002) The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agric Ecosyst Environ 92:1–19

    Article  Google Scholar 

  • McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Book  Google Scholar 

  • Mooney HA (ed) (1986) Photosynthesis plant ecology. Blackwell Scientific, Oxford

    Google Scholar 

  • Murwira A, Skidmore AK (2006) Monitoring change in the spatial heterogeneity of vegetation cover in an African savannah. Int J Remote Sens 27:2255–2269

    Article  Google Scholar 

  • Mutanga O, Skidmore AK, Prins HHT (2004) Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens Environ 89:396–408

    Article  Google Scholar 

  • Mutanga O, Adam E, Cho MA (2012) High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int J Appl Earth Obs Geoinf 18:399–406

    Article  Google Scholar 

  • Ndlovu N, Luck-Vogel M, Schloms B, Cho M (2011) The quantification of human impact on the Dukuduku indigenous forest from 1960 to 2008 using GIS techniques as a basis for sustainable management. Fifth natural forest and wood land symposium Richard Bay KwaZulu Natal, Department of Agriculture Forestry and Fisheries South Africa, Richard bay South Africa

  • Novozamsky I, Houba VJK, Van Eck R, Van Vark W (1983) A novel digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal 14:239–249

    Article  CAS  Google Scholar 

  • Nye PH (1960) Organic matter and nutrient cycles under moist tropical forest. Plant Soil 13:333–346

    Article  Google Scholar 

  • Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens Environ 129:122–131

    Article  Google Scholar 

  • Ozdemir I, Karnieli A (2011) Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int J Appl Earth Obs Geoinf 13(5):701–710

    Article  Google Scholar 

  • Piccolo MC, Neill C, Cerri CC (1994) Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronosequence. Plant Soil 162:61–70

    Article  CAS  Google Scholar 

  • Prasad A (2003) Book review, Lessons from Amazonia, The Ecology and Conservation of a Fragmented Forest. Landsc Ecol 18:214–215

    Google Scholar 

  • Ramoelo A, Skidmore AK, Cho MA, Schlerf M, Mathieu R, Heitkönig IMA (2012) Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor. Int J Appl Earth Obs Geoinf 19:151–162

    Article  Google Scholar 

  • Richter R, Schlapfer D (2002) Geo-atmospheric processing of airborne imaging spectrometry data. Part 2. Atmospheric/topographic correction. Int J Remote Sens 23:2631–2649

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement and retrogradation of natural vegetation NASA/GSFC Type III Final Report. Greenbelt, p 371

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Simons AJ, Leakey RRB (2004) Tree domestication in tropical agroforestry. Agrofor Syst 61:167–181

    Article  Google Scholar 

  • Skidmore A (1999) Accuracy assessment of spatial information. In: Stein A, van der Meer F, Gorte B (eds) Spatial statistics for remote sensing. Kluwer Academic Publishers, Dordrecht, pp 197–209

    Google Scholar 

  • Smith M-L, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL (2002) Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol Appl 12:1286–1302

    Article  Google Scholar 

  • Van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Article  Google Scholar 

  • Van Heerden IL 2011 Management concepts for the Mfolozi flats and estuary as a component of the management of the iSimangaliso Wetland Park. In: Bate GC, Whitfield AK, Forbes AT (eds) 2011 A review of studies on the Mfolozi estuary and associated flood plain with emphasis on information required by management for future reconnection of the river to the St. Lucia system Report to the Water Research Commission WRC Report No. KV 255/10. Pretoria: WRC

  • Van Wyk GF, Everard DA, Midgley JJ, Gordon IG (1996) Classification and dynamics of a southern African subtropical coastal lowland forest. S Afr J Bot 62:133–142

    Google Scholar 

  • Vasconcelos HL, Luizão FJ (2004) Litter production and litter nutrient concentrations in a fragmented amazonian landscape. Ecol Appl 14:884–892

    Article  Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Yoder BJ, Pettigrew-Crosby RE (1995) Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens Environ 53:199–211

    Article  Google Scholar 

  • Zengeya FM, Mutanga O, Murwira A (2013) Linking remotely sensed forage quality estimates from WorldView-2 multispectral data with cattle distribution in a savanna landscape. Int J Appl Earth Obs Geoinf 21:513–524

    Article  Google Scholar 

Download references

Acknowledgments

The Council for Scientific and Industrial Research (CSIR) and the Department of Science and Technology (DST) provided the funding for this study. We wish to thank Oupa Malahlela for atmospherically correcting the RapidEye images used in the study. We also express gratitude to Mr. Khanyile MM, the manager of the Dukuduku forest for his wonderful cooperation throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses Azong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, M.A., Ramoelo, A., Debba, P. et al. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data. Landscape Ecol 28, 1479–1491 (2013). https://doi.org/10.1007/s10980-013-9908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9908-7

Keywords

Navigation