Landscape Ecology

, Volume 25, Issue 4, pp 561–572

Derivation of a yearly transition probability matrix for land-use dynamics and its applications

  • Takenori Takada
  • Asako Miyamoto
  • Shigeaki F. Hasegawa
Research Paper

DOI: 10.1007/s10980-009-9433-x

Cite this article as:
Takada, T., Miyamoto, A. & Hasegawa, S.F. Landscape Ecol (2010) 25: 561. doi:10.1007/s10980-009-9433-x

Abstract

Transition matrices have often been used in landscape ecology and GIS studies of land-use to quantitatively estimate the rate of change. When transition matrices for different observation periods are compared, the observation intervals often differ because satellite images or photographs of the research site taken at constant time intervals may not be available. If the observation intervals differ, the transition probabilities cannot be compared without calculating a transition matrix with the normalized observation interval. For such calculation, several previous studies have utilized a linear algebra formula of the power root of matrices. However, three difficulties may arise when applying this formula to a practical dataset from photographs of a research site. We examined the first difficulty, namely that plural solutions could exist for a yearly transition matrix, which implies that there could be multiple scenarios for the same transition in land-use change. Using data for the Abukuma Mountains in Japan and the Selva el Ocote Biosphere Reserve in Mexico, we then looked at the second difficulty, in which we may obtain no positive Markovian matrix and only a matrix partially consisting of negative numbers. We propose a way to calibrate a matrix with some negative transition elements and to estimate the prediction error. Finally, we discuss the third difficulty that arises when a new land-use category appears at the end of the observation period and how to solve it. We developed a computer program to calculate and calibrate the yearly matrices and to estimate the prediction error.

Keywords

Abukuma Mountains (Japan)Computer programMultiple scenariosn-th power roots of matricesObservation interval

Supplementary material

10980_2009_9433_MOESM1_ESM.doc (66 kb)
Supplementary material 1 (DOC 66 kb)

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Takenori Takada
    • 1
  • Asako Miyamoto
    • 2
  • Shigeaki F. Hasegawa
    • 1
  1. 1.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  2. 2.Forestry and Forest Products Research InstituteTsukubaJapan