, Volume 23, Issue 10, pp 1205-1217
Date: 05 Nov 2008

Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The effect of urbanization on species distribution has been extensively documented, but a main challenge in urban ecology is to better understand the factors causing different distributions among species in response to urbanization. Hence, this paper aims to compare the effects of urbanization on woodland plant assemblages in two cities and to describe species responses by using several indicators. The study was carried out in the cities of Angers and Rennes (North-Western France) where 11 isolated woodlands were surveyed along an urban–rural gradient in each city. Abundance data of spontaneous species were collected from 220 quadrats. The effect of land cover (within a 500 m buffer around each woodland) on species assemblages was investigated by Canonical Correspondence Analysis. Buildings and pavement areas were the most significant predictors of species composition, and the effect of location in Angers or Rennes appeared on the second axis. More than 60% of the most frequent plant species were indicator of urban or rural location and their preferences were similar in the two cities. These lists of urban and rural indicator species were compared with Ellenberg’s indicator values and two other indicators specific to forest environment. The species which grow preferentially in urban woodlands are species which are already known to be associated with recent forests rather than ancient forests; with hedgerows rather than woodlands. The opposite pattern was observed concerning rural species. Moreover, urban indicator species have higher optima for soil pH and soil nitrogen content than rural indicator species. Different characteristics and history of forest habitat—continuity of the forest land cover, linearity of the habitat, change in adjacent land cover and land use—could select the same species, and the responses of the latter might involve different preferences concerning soil alkalinity and nutrient status.