Skip to main content
Log in

Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of graphene nanoplatelets (GNPs) on the curing of an epoxy resin based on diglycidyl ether of bisphenol A (DGEBA) and cross-linked with 4,4′-diaminodiphenylmethane (DDM) was studied. Dynamic mechanical properties and tensile properties of the corresponding graphene/epoxy nanocomposites were obtained. Two compositions 1 and 5 mass% of GNPs were studied. The cross-linking reaction of the epoxy resin is accelerated in dispersions with 5 mass% GNPs. In the presence of GNPs, the curing reaction becomes less exothermic, obtaining less perfect epoxy networks compared to neat epoxy (DGEBA–DDM) thermoset. Accordingly, the glass transition temperatures (T g) of the nanocomposites are lower than that of the neat epoxy thermoset. This effect is not detected for low content of graphene (1 mass%). Protocol of curing having two isothermal steps leads to more perfect networks than the dynamic curing in the DSC. The T g reduction is minimized in the samples cured through two isothermal steps. The storage moduli of the nanocomposite containing 5 mass% graphene, both in the glassy (T < T g) and the rubbery (T > T g) states, are higher than the ones of neat epoxy thermoset, being most pronounced this effect at T > T g. Tensile tests confirmed the higher elastic moduli of the nanocomposites; however, a decrease in strain at break and tensile strength was observed for the nanocomposite containing 5 mass% of GNPs. This brittle behavior is consistent with the morphology of the samples studied by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu K, Kulkarni D, Choi I, Tsukruk V. Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci. 2014;39:1878–907.

    Article  Google Scholar 

  2. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–75.

    Article  CAS  Google Scholar 

  3. Prolongo SG, Jiménez-Suárez A, Moriche R, Ureña A. In situ processing of epoxy composites reinforced with graphene nanoplatelets. Compos Sci Technol. 2013;86:185–91.

    Article  CAS  Google Scholar 

  4. Prolongo SG, Jiménez-Suárez A, Moriche R, Ureña A. Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur Polym J. 2014;53:292–301.

    Article  CAS  Google Scholar 

  5. Monti M, Rallini M, Puglia D, Peponi L, Torre L, Kenny JM. Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Compos A. 2013;46:166–72.

    Article  CAS  Google Scholar 

  6. Díez-Pascual AM, Naffakh M, Marco C, Ellis G, Gómez-Fatou MA. High-performance nanocomposites based on polyetherketones. Prog Mater Sci. 2012;57:1106–90.

    Article  Google Scholar 

  7. Gude MR, Prolongo SG, Ureña A. Effect of the epoxy/amine stoichiometry on the properties of carbon nanotube/epoxy composites. J Therm Anal Calorim. 2012;108:717–23.

    Article  CAS  Google Scholar 

  8. Shiravand F, Hutchinson JM, Calventus Y. Influence of the isothermal cure temperature on the nanostructure and thermal properties of an epoxy layer silicate nanocomposite. Polym Eng Sci. 2014;54:51–8.

    Article  CAS  Google Scholar 

  9. Cowie JMG, Arrighi V. Polymers: chemistry and physics of modern materials. London: Taylor & Francis Group; 2008.

    Google Scholar 

  10. Puglia D, Valentini L, Armentano I, Kenny JM. Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy. Diam Relat Mater. 2003;12:827–32.

    Article  CAS  Google Scholar 

  11. Puglia D, Valentini L, Kenny JM. Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. J Appl Polym Sci. 2003;88:452–8.

    Article  CAS  Google Scholar 

  12. Fu Y, Zhong W. Cure kinetics behavior of a functionalized graphitic nanofiber modified epoxy resin. Thermochim Acta. 2011;516:58–63.

    Article  CAS  Google Scholar 

  13. Prolongo SG, Moriche R, Jiménez-Suárez A, Sánchez M, Ureña A. Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur Polym J. 2014;61:206–14.

    Article  CAS  Google Scholar 

  14. Ozawa K. Estimating isothermal life from thermogravimetric data. Bull Chem Soc Jpn. 1966;38:1881–4.

    Article  Google Scholar 

  15. Costa ML, Pardini LC, Rezende MC. Influence of aromatic amine hardeners in the cure kinetics of an epoxy resin used in advanced composites. Mater Res. 2005;8:65–70.

    CAS  Google Scholar 

  16. Zvetkov VL, Calado V. Comparative DSC kinetics of the reaction of DGEBA with aromatic diamines III. Formal kinetic study of the reaction of DGEBA with diamino diphenyl methane. Thermochim Acta. 2013;560:95–103.

    Article  CAS  Google Scholar 

  17. Miranda MIG, Tomedi C, Bica CID, Samios D. A DSC kinetic study on the effect of filler concentration on crosslinking of dyglycidylether of bisphenol-A with 4,4-diaminodiphenylmethane. Polymer. 1997;38:1017–20.

    Article  Google Scholar 

  18. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  19. Riande E, Díaz-Calleja R, Prolongo MG, Masegosa RM, Salom C. Polymer viscoelasticity: stress and strain in practice. New York: Marcel Dekker; 2000.

    Google Scholar 

  20. Sánchez-Cabezudo M, Masegosa RM, Salom C, Prolongo MG. Correlations between the morphology and thermo-mechanical properties of poly(vinyl acetate)/epoxy thermoset blends. J Therm Anal Calorim. 2010;102:1025–33.

    Article  Google Scholar 

  21. Tang LC, Wang YJ, Yang D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ. The effect of graphene dispersions on the mechanical properties of graphene/epoxy composites. Carbon. 2013;60:16–27.

    Article  CAS  Google Scholar 

  22. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Hollertz R, Nüesch FA, Chu BTT. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett. 2012;531:6–10.

    Article  CAS  Google Scholar 

  23. Wang X, Jin J, Song M. An investigation of the mechanism of graphene toughening epoxy. Carbon. 2013;65:324–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Ministerio de Economía y Competitividad of Spain. Project MAT2013-46695-C3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Prolongo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prolongo, M.G., Salom, C., Arribas, C. et al. Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites. J Therm Anal Calorim 125, 629–636 (2016). https://doi.org/10.1007/s10973-015-5162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5162-3

Keywords

Navigation