Skip to main content
Log in

Investigating the thermal properties of polyethylene plasma modified by using unconventional chemical vapors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we presented plasma modification of low-density polyethylene (PE) powder using unconventional chemicals. This work focused on the thermal behavior of modified PE. Plasma modification of PE was carried out using unconventional chemical vapor i.e., acetone, toluene, ethanol, methanol, isopropanol, and chloroform, respectively. For all the process, the modification time was kept constant for 2 min. Chamber pressure of 100 Pa was used for the study. The thermal behavior of the plasma-modified and unmodified PE was carried out by differential scanning calorimetry and thermogravimetric analysis. We have found that there is a maximum improvement of crystallinity and thermal stability of PE when ethanol is used for plasma modification. Results obtained from DSC showed that plasma modification of PE in ethanol vapors increases the crystallinity of the PE without damaging the surface properties. Thermal stability of PE plasma modified in ethanol gives maximum thermal improvement to almost 25 °C at 5 mass% mass loss compared to unmodified PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patra N, Barone AC, Salerno M. Solvent effects on the thermal and mechanical properties of poly (methyl methacrylate) casted from concentrated solutions. Adv Polym Technol. 2011;30:12–20.

    Article  CAS  Google Scholar 

  2. Patra N, Salerno M, Cozzoli PD, Barone AC, Ceseracciu L, Pignatelli F, Carzino R, Marini L, Athanassiou A. Thermal and mechanical characterization of poly(methyl methacrylate) nanocomposites filled with TiO2 nanorods. Compos Part B Eng. 2012;43:3114–9.

    Article  CAS  Google Scholar 

  3. Patra N, Salerno M, Cozzoli PD, Athanassiou A. Surfactant-induced thermomechanical and morphological changes in TiO2-polystyrene nanocomposites. J Colloid Interface Sci. 2013;405:103–8.

    Article  CAS  Google Scholar 

  4. Patra N, Salerno M, Diaspro A, Athanassia A. Effect of solvents on the dynamic viscoelastic behavior of poly(methyl methacrylate) film prepared by solvent casting. J Mater Sci. 2011;46:5044–9.

    Article  CAS  Google Scholar 

  5. Patra N, Salerno M, Diaspro A, Athanassiou A. Study of dynamic viscoelastic behavior of polystyrene films on addition of oleic acid. Microelectron Eng. 2011;88:1849–51.

    Article  CAS  Google Scholar 

  6. Patra N, Salerno M, Malerba M, Cozzoli PD, Athanassia A. Improvement of thermal stability of poly(methyl methacrylate) by incorporation of colloidal TiO2 nanorods. Polym Degrad Stab. 2011;96:1377–81.

    Article  CAS  Google Scholar 

  7. Patra N, Hladik J, Pavlatová M, Militký J, Martinová L. Investigation of plasma-induced thermal, structural and wettability changes on low density polyethylene powder. Polym Degrad Stab. 2013;98:1489–94.

    Article  CAS  Google Scholar 

  8. Piringer OG. Plastics packaging: interactions with food and pharmaceuticals, vol. 2. Weinheim: Wiley; 2008.

    Book  Google Scholar 

  9. Shenton MJ, Lovell-Hoare MC, Stevens GC. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. J Phys D Appl Phys. 2001;34:2754.

    Article  CAS  Google Scholar 

  10. Mothé CG, Vieira CR, Mothé MG. Thermal and surface study of phenolic resin from cashew nut shell liquid cured by plasma treatment. J Therm Anal Calorim. 2013;114:821–6.

    Article  Google Scholar 

  11. Pascu CI, Gingu O, Rotaru P, Vida-Simiti I, Harabor A, Lupu N. Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder. J Therm Anal Calorim. 2012;113:849–57.

    Article  Google Scholar 

  12. WO.98/28117. Installation for Low pressure plasma processing. 1996.

  13. Píchal J, Hladík J, Špatenka P. Atmospheric-air plasma surface modification of polyethylene powder. Plasma Process Polym. 2009;6:148–53.

    Article  Google Scholar 

  14. Hladik J, Spatenka P, Aubrecht L, Pichal J. New method of microwave plasma treatment of HDPE powders. Czechoslov J Phys. 2006;56:1120–5.

    Article  Google Scholar 

  15. Dayss E, Leps G, Meinhardt J. Surface modification for improved adhesion of a polymer–metal compound. Surf Coat Technol. 1999;116–119:986–90.

    Article  Google Scholar 

  16. Horakova M, Spatenka P, Hladik J, Hornik J, Steidl J, Polachova A. Investigation of adhesion between metal and plasma-modified polyethylene. Plasma Process Polym. 2011;8:983–8.

    Article  CAS  Google Scholar 

  17. Bretagnol F, Tatoulian M, Arefi-Khonsari F, Lorang G, Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React Funct Polym. 2004;61:221–32.

    Article  CAS  Google Scholar 

  18. France RM, Short RD. Plasma treatment of polymers: the effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study. Langmuir. 1998;14:4827–35.

    Article  CAS  Google Scholar 

  19. Kim JW, Choi HS. Surface crosslinking of high-density polyethylene beads in a modified plasma reactor. J Appl Polym Sci. 2002;83:2921–9.

    Article  CAS  Google Scholar 

  20. Tajima S, Komvopoulos K. Surface modification of low-density polyethylene by inductively coupled argon plasma. J Phys Chem B. 2005;109:17623–9.

    Article  CAS  Google Scholar 

  21. Mathot VBF. Temperature dependence of some thermodynamic functions for amorphous and semi-crystalline polymers. Polymer (Guildf). 1984;25:579–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported in part by the Project OP VaVpI Centre for Nanomaterials, Advanced Technologies and Innovation CZ.1.05/2.1.00/01.0005 and by the Project Development of Research Teams of R&D Projects at the Technical university of Liberec CZ.1.07/2.3.00/30.0024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Patra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, N., Hladik, J. & Martinová, L. Investigating the thermal properties of polyethylene plasma modified by using unconventional chemical vapors. J Therm Anal Calorim 117, 229–234 (2014). https://doi.org/10.1007/s10973-014-3728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3728-0

Keywords

Navigation