Skip to main content
Log in

Thermal degradation of Pb(Zr0.53Ti0.47 )O3/poly(vinylidene fluoride) composites as a function of ceramic grain size and concentration

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1−x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas P, Varughese KT, Dwarakanath K, Varma KBR. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol. 2010;70:539–45.

    Article  CAS  Google Scholar 

  2. Sonoda K, Juuti J, Moriya Y, Jantunen H. Modification of the dielectric properties of 0–3 ceramic-polymer composites by introducing surface active agents onto the ceramic filler surface. Compos Struct. 2010;92:1052–8.

    Article  Google Scholar 

  3. Das-Gupta DK, Abdullah MJ. Electroactive properties of polymer-ceramic composites. Ferroelectrics. 1988;87:213–28.

    Article  CAS  Google Scholar 

  4. Dias CJ, Das-Gupta DK. Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans Dielectr Electrical Insulation. 1996;3:706–34.

    Article  CAS  Google Scholar 

  5. Dias CJ, Wenger MP, Kaminorz Y, Hopfner U, Das-Gupta DK. Electro-active properties of intelligent ferroelectric ceramic/polymer composite sensors. Electrets, 1994 (ISE 8), 8th International Symposium on 1994. p. 589–93.

  6. Newnham RE, Skinner DP, Cross LE. Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull. 1978;13:525–36.

    Article  CAS  Google Scholar 

  7. Newnham RE, Bowen LJ, Klicker KA, Cross LE. Composite piezoelectric transducers. Mater Des. 1980;2:93–106.

    Article  CAS  Google Scholar 

  8. Nalwa HS. Ferroelectric polymers: chemistry, physics and applications. New York: Marcel Dekker; 1995.

    Google Scholar 

  9. Lovinger AJ. Poly(vinylidene fluoride). In: Basset DC, editor. Developments in crystalline polymers. London: Elsevier; 1982.

    Google Scholar 

  10. Sencadas V, Gregorio R, Lanceros-Méndez S. α to β Phase transformation and microstructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B Phys. 2009;48:514–25.

    Article  CAS  Google Scholar 

  11. Sencadas V, Lanceros-Méndez S, Pouzada AS, Gregório Filho R. α- to β Transformation on PVDF films obtained by uniaxial stretch. Mater Sci Forum. 2006;514–516:5.

    Google Scholar 

  12. Branciforti MC, Sencadas V, Lanceros-Mendez S, Gregorio R. New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. J Polym Sci, Part B: Polym Phys. 2007;45:2793–801.

    Article  CAS  Google Scholar 

  13. Gomes J, Serrado Nunes J, Sencadas V, Lanceros-Mendez S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct. 2010;19:065010.

    Article  Google Scholar 

  14. Cross LE. Ferroelectric materials for electromechanical transducer applications. Mater Chem Phys. 1996;43:108–15.

    Article  CAS  Google Scholar 

  15. Amin A, Newnham RE, Cross LE, Cox DE. Phenomenological and structural study of a low-temperature phase transition in the PbZrO3-PbTiO3 system. J Solid State Chem. 1981;37:248–55.

    Article  CAS  Google Scholar 

  16. Wu A, Vilarinho PM, Shvartsman VV, Suchaneck G, Kholkin AL. Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy. Nanotechnology. 2005;16:2587.

    Article  CAS  Google Scholar 

  17. Firmino Mendes S, Costa CM, Sencadas V, Serrado Nunes J, Costa P, Gregorio R, Lanceros-Mendez S. Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinylidene fluoride) Pb(Zr0.53Ti0.47)O3 composites. Appl Phys A: Mater Sci Process. 2009;96:1037.

    Article  CAS  Google Scholar 

  18. Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG. Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids. 2008;354:72–8.

    Article  CAS  Google Scholar 

  19. Botelho G, Silva MM, Gonçalves AM, Sencadas V, Serrado-Nunes J, Lanceros-Mendez S. Performance of electroactive poly(vinylidene fluoride) against UV radiation. Polym Testing. 2008;27:818–22.

    Article  CAS  Google Scholar 

  20. Liau LCK, Viswanath DS. Thermal degradation of poly(vinylbutyral)/ceramic composites: a kinetic approach. Ind Eng Chem Res. 1998;37:49–57.

    Article  CAS  Google Scholar 

  21. Liu Y-L, Wei W-L, Hsu K-Y, Ho W-H. Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta. 2004;412:139–47.

    Article  CAS  Google Scholar 

  22. de C, Campos JS, Ribeiro AA, Cardoso CX. Preparation and characterization of PVDF/CaCO3 composites. Mater Sci Eng, B. 2007;136:123–8.

    Article  Google Scholar 

  23. Turi E. Thermal characterization of polymeric materials. New York: Academic; 1997.

    Google Scholar 

  24. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  25. Flynn JH, Wall LA. Initial kinetic parameters from thermogravimetric rate and conversion data. J Polym Sci, Part C: Polym Lett. 1967;5:191–6.

    Article  CAS  Google Scholar 

  26. Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta. 2005;435:142–50.

    Article  CAS  Google Scholar 

  27. Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab. 2006;91:60–8.

    Article  CAS  Google Scholar 

  28. Costa CM, Firmino Mendes S, Sencadas V, Ferreira A, Gregorio R Jr, Gómez Ribelles JL, Lanceros-Mendez S. Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. J Non-Crystalline Solids. 2010;356:2127–33.

    Article  CAS  Google Scholar 

  29. Mano JF. Thermal stability of side-chain polymer liquid crystals. e-Polymers. 2004;15:077.

    Google Scholar 

  30. Madorskaya LY, Loginova NN, Panshin YA, Lobanov AM. Role of end groups in polyvinylidene fluoride. Polym Sci USSR. 1983;25:2490–6.

    Article  Google Scholar 

  31. Pedro M, Caparrós C, Gonçalves R, Martins P, Benelmekki M, Botelho G, Lanceros-Mendez S. The role of nanoparticle surface charge on the nucleation of the electroactive β-Poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C. 2012;116(29):15790–4.

    Article  Google Scholar 

  32. Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Mendez S. Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci. 2012;47(3):1378–88.

    Article  CAS  Google Scholar 

  33. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:5.

    Article  Google Scholar 

  34. Hamid SH. Handbook of polymer degradation–revised and expanded. New York: Marcel Dekker Inc; 2000.

    Google Scholar 

  35. Giancaterina S, Rossi A, Rivaton A, Gardette JL. Photochemical evolution of poly(ether ether ketone). Polym Degrad Stab. 2000;68:133–44.

    Article  CAS  Google Scholar 

  36. Zulfiqar S, Zulfiqar M, Rizvi M, Munir A, Mc Neill IC. Study of the thermal degradation of polychlorotrifluoroethylene, poly(vinylidene fluoride) and copolymers of chlorotrifluoroethylene and vinylidene fluoride. Polym Degrad Stab. 1994;43:423–30.

    Article  CAS  Google Scholar 

  37. O’Shea ML, Morterra C, Low MJD. Spectroscopic studies of carbons. XVII. Pyrolysis of polyvinylidene fluoride. Mater Chem Phys. 1990;26:193–209.

    Article  Google Scholar 

  38. Sencadas V, Martins P, Pitaes A, Benelmekki M, Ribelles JLG, Lanceros-Mendez S. Influence of the ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of poly(vinylidene fluoride). Langmuir. 2011;27(11):7241–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by FEDER funds through the “Programa Operacional Factores de Competitividade–COMPETE” and by national funds by FCT-Fundação para a Ciência e a Tecnologia, project references PTDC/CTM/69316/2006, PTDC/CTM-NAN/112574/2009, and NANO/NMed-SD/0156/2007. S. Firmino Mendes, C.M. Costa and V. Sencadas and thank to FCT grants SFRH/BD/22506/2005, SFRH/BD/68499/2010 and SFRH/BPD/63148/2009, respectively. The authors also thank support from the COST Action MP1003, the “European Scientific Network for Artificial Muscles” (ESNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senentxu Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, S.F., Costa, C.M., Sencadas, V. et al. Thermal degradation of Pb(Zr0.53Ti0.47 )O3/poly(vinylidene fluoride) composites as a function of ceramic grain size and concentration. J Therm Anal Calorim 114, 757–763 (2013). https://doi.org/10.1007/s10973-012-2918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2918-x

Keywords

Navigation