Skip to main content
Log in

A review on the thermal stability of calcium apatites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

High temperature processing is essential for the preparation of apatites for biomaterials, lighting, waste removal and other applications. This requires a good understanding of the thermal stability and transitions upon heating. The most widely used is hydroxyapatite (HAp), but increasing interest is being directed to fluorapatite (FAp) and chlorapatite (ClAp). The structural modifications for substitutions are discussed to understand the temperature processing range for the different apatites. This is based on a review of the literature from the past few decades, together with recent research results. Apatite thermal stability is mainly determined by the stoichiometry (Ca/P ratio and structural substitutions) and the gas composition during heating. Thermal stability is lowered the most by a substitution of calcium and phosphate, leading to loss in phase stability at temperatures less than 900 °C. The anions in the hexagonal axis, OH in HAp, F in FAp and Cl in ClAp are the last to leave upon heating, and prevention of the loss of these groups ensures high temperature stability. The information discussed here will assist in understanding the changes of apatites during heating in calcination, sintering, hydrothermal processing, plasma spraying, flame pyrolysis, and other high-temperature processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pan Y, Fleet ME. Compositions of the apatite group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological and material importance. 2002. p. 13–50.

  2. Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ. Nomenclature of the apatite supergroup minerals. Eur J Mineral. 2010;22:163–79.

    Article  CAS  Google Scholar 

  3. Elliott J. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

    Google Scholar 

  4. Kanazawa T. Inorganic phosphates materialls. Tokyo: Kodansha Ltd. and Elsevier; 1989.

    Google Scholar 

  5. Gross KA, Berndt CC. Biomedical application of apatites. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 2002;48:631–72.

    Article  CAS  Google Scholar 

  6. Veiderma M. Studies on thermochemistry and thermal processing of apatite. Proc Estonian Acad Sci Chem. 2000;49:5–18.

    CAS  Google Scholar 

  7. Elliott JC. Calcium phosphate biominerals. Phosphates: geochemical, geobiological and material importance. Rev Mineral Geochem. 2002;48:427–54.

    Article  CAS  Google Scholar 

  8. LeGeros R. Calcium phosphates in oral biology and medicine. New York: Karger Publishing; 1991.

    Google Scholar 

  9. Piccoli P, Candela P. Apatite in igneous systems. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological and material importance. Washington: Mineralogical Society of America; 2002. p. 255–92.

    Google Scholar 

  10. Cisse L, Mrabet T. World phosphate production: overview and prospects. Phosphorus Research Bulletin: Casablanca; 2004. p. 21–25.

  11. Jasinski SM. Phosphate rock. In: Mineral Commodity Summaries. Washington, DC: U.S. Geological Survey; 2011. p. 118–9.

  12. Marshall HL, Reynolds DS, Jacob KD, Tremearne TH. Phosphate fertilizers by calcination process. Ind Eng Chem. 1937;29:1294–8.

    Article  Google Scholar 

  13. Volfkovich SI, Veiderma M. The progress of hydrothermal processing of phosphate rock. In: Technical-economic conference. ISMA, Fertliser Techn Orlando: Orlando; 1978. p. 49–62.

  14. Veiderma M, Knubovets R, Tõnsuaadu K. Fluorhydroxyapatites of Northern Europe and their thermal transformations. Phosphorus Sulfur Silicon Relat Elem. 1996;109:43–6.

    Article  Google Scholar 

  15. Veiderma M, Pyldme M, Tynsuaadu K. Thermische entfluorierung of apatit. Chein Techn. 1988;40:169–72.

    CAS  Google Scholar 

  16. Sneddon IR, Orueetxebarria M, Hodson ME, Schofield PF, Valsami-Jones E. Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: a leaching column study. Environ Pollut. 2006;144:816–25.

    Article  CAS  Google Scholar 

  17. Lazic S, Zec S, Miljevic N, Milonjic S. The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid. Thermochim Acta. 2001;374:13–22.

    Article  CAS  Google Scholar 

  18. Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009;44:2343–87.

    Article  CAS  Google Scholar 

  19. Gross KA, Berndt CC, Stephens P, Dinnebier R. Oxyapatite in hydroxyapatite coatings. J Mater Sci. 1998;33:3985–91.

    Article  CAS  Google Scholar 

  20. Zyman Z, Ivanov I, Rochmistrov D, Glushko V, Tkachenko N, Kijko S. Sintering peculiarities for hydroxyapatite with different degrees of crystallinity. J Biomedical Mater Res. 2001;54:256–63.

    Article  CAS  Google Scholar 

  21. Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK. Sintering effects on the strength of hydroxyapatite. Biomater. 1995;16:409–15.

    Article  CAS  Google Scholar 

  22. Haines P. Thermal methods of analysis. Principles, applications and problems. London: Blackie Academic & Professional; 1995.

    Google Scholar 

  23. Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Physica B. 2010;405:4256–61.

    Article  CAS  Google Scholar 

  24. Wallaeys R. Contribution a l’etude des apatits phosphocalciques. Ann Chim. 1952;7:808–48.

    CAS  Google Scholar 

  25. Tanaka H, Chikazawa M, Kandori K, Ishikawa T. Influence of thermal treatment on the structure of calcium hydroxyapatite. Phys Chem Chem Phys. 2000;2:2647–50.

    Article  CAS  Google Scholar 

  26. Dzyuba ED, Sokolov TM, Valyukevich PL. Thermal stability of calcium phosphates. Izvestiya Akad Nauk SSSR Neorg Mater. 1982;18:107–10 (In russian).

    CAS  Google Scholar 

  27. Prener JS. The growth and crystallographic properties of calcium fluor- and chlorapatite crystals. J Electrochem Soc. 1967;114:77–83.

    Article  CAS  Google Scholar 

  28. Surendran R, Chinnakali K. Preparation and characterisation of fluorapatite whiskers. Cryst Res Technol. 2008;43:490–5.

    Article  CAS  Google Scholar 

  29. Demnanti I, Grossin D, Combes C, Rey C, Parco M, Fagoaga I, Barykin G, Braceras I. Hydroxyapatite and chlorapatite. Thin coatings obtained by a novel plasma mini-torch process. In: 5th forum on new materials. Nantes; 2010, p. FL-1–L-14.

  30. Kannan S, Rebelo A, Lemos AF, Barba A, Ferreira JMF. Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. J Eur Ceram Soc. 2007;27:2287–94.

    Article  CAS  Google Scholar 

  31. García-Tuñón E, Franco J, Dacuña B, Zaragoza G, Guitián F. Chlorapatite conversion to hydroxyapatite under high temperature hydrothermal conditions. Mater Sci Forum. 2010;636–637:9–14.

    Article  CAS  Google Scholar 

  32. Liao C-J, Lin F-H, Chen K-S, Sun J-S. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomater. 1999;20:1807–13.

    Article  CAS  Google Scholar 

  33. Park HC, Baek DJ, Park YM, Yoon SY, Stevens R. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J Mater Sci. 2004;39:2531–4.

    Article  CAS  Google Scholar 

  34. Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 2004;24:693–8.

    Article  CAS  Google Scholar 

  35. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160:340–9.

    Article  CAS  Google Scholar 

  36. Corno M, Busco C, Bolis V, Tosoni S, Ugliengo P. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. Langmuir. 2009;25:2188–98.

    Article  CAS  Google Scholar 

  37. Sakhno Y, Bertinetti L, Iafisco M, Tampieri A, Roveri N, Martra G. Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: a comparative study. J Phys Chem C. 2010;114:16640–8.

    Article  CAS  Google Scholar 

  38. Wang PE, Chaki TK. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci. 1993;4:150–8.

    Article  CAS  Google Scholar 

  39. Chen Y, Miao X. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomater. 2005;26:1205–10.

    Article  CAS  Google Scholar 

  40. White AA, Kinloch IA, Windle AH, Best SM. Optimization of the sintering atmosphere for high-density hydroxyapatite -carbon nanotube composites. J R Soc Interface. 2010;7:S529–39.

    Article  CAS  Google Scholar 

  41. Bredig MA, Frank HH, Füldner H. Beiträge zur kenntnis der kalk-phosphorsäure-verbindungen II. Z Elektrochem. 1933;39:959–69.

    CAS  Google Scholar 

  42. Trombe JC, Montel G. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice–I on the existence of calcium and strontium oxyapatites. J Inorg Nucl Chem. 1978;40:15–21.

    Article  CAS  Google Scholar 

  43. Cihlář J, Buchal A, Trunec M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci. 1999;34:6121–31.

    Article  Google Scholar 

  44. Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.

    Article  CAS  Google Scholar 

  45. Monma H, Kanazawa T. Effect of hydroxylation on the thermal reactivities of fluorapatite and chlorapatite. Bull Chem Soc Jpn. 1976;49:1421–2.

    Article  CAS  Google Scholar 

  46. Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomater. 1993;14:437–41.

    Article  CAS  Google Scholar 

  47. Gross KA, Gross V, Berndt CC. Thermal analysis of amorphous phases in hydroxyapatite coatings. J Am Ceram Soc. 1998;81:106–12.

    Article  CAS  Google Scholar 

  48. Chen J, Tong W, Yang C, Feng J, Zhang X. Efect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. J Biomedical Mater Res. 1997;34:15–20.

    Article  CAS  Google Scholar 

  49. Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.

    Article  CAS  Google Scholar 

  50. McPherson R, Gane N, Bastow TJ. Structural characterization of plasma-sprayed hydroxylapatite coatings. J Mater Sci. 1995;6:327–34.

    Article  CAS  Google Scholar 

  51. Yang C-W, Lui T-S. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomater. 2009;5:2728–37.

    Article  CAS  Google Scholar 

  52. Lin F-H, Chun-Jen L, Ko-Shao C, Jui-Sheng S. Thermal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air. Mater Sci Eng. 2000;13:97–104.

    Article  Google Scholar 

  53. Shpak AP, Karbovskii VL, Trachevskii VV. Apatites, Kiev: Akademperiodika; 2002. (In Russian).

  54. Park E, Condrate RA, Lee D, Kociba K, Gallagher PK. Characterization of hydroxyapatite: before and after plasma spraying. J Mater Sci. 2002;13:211–8.

    Article  CAS  Google Scholar 

  55. DeGroot K, Klein C, Wolke J, De Blieck-Hogervorst J. Calcium phosphate and hydroxylapatite ceramics. Plasma-sprayed coatings of calcium phosphate. In: Yamamuro T, Hench LL, Wilson J, editors. CRC handbook of bioactive ceramics. Boca Raton: CRC Press; 1990. p. 133–42.

    Google Scholar 

  56. Wilson R, Elliott J, Dowker S, Rodriguez-Lorenzo L. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005;26:1317–27.

    Article  CAS  Google Scholar 

  57. Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23:1065–72.

    Article  CAS  Google Scholar 

  58. Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59:697–708.

    Article  CAS  Google Scholar 

  59. Astala R, Stott MJ. First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater. 2005;17:4125–33.

    Article  CAS  Google Scholar 

  60. Li Y, Kong F, Weng W. Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomedical Mater Res Part B. 2009;89B:508–17.

    Article  CAS  Google Scholar 

  61. Kim KY, Shaver KJ. Calcination properties of precipitated basic calcium phosphates. J KIChE. 1973;11:336–48.

    CAS  Google Scholar 

  62. Pyldme M, Buzágh-Gere É, Pyldme J, Veiderma M. Thermal analysis of the interaction of phosphorite with condensed phosphates of calcium. J Therm Anal Calorim. 1976;10:195–204.

    Article  Google Scholar 

  63. Nilen R, Richter P. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. J Mater Sci. 2008;19:1693–702.

    Article  CAS  Google Scholar 

  64. DeLeeuw NH. Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem. 2010;20:5376–89.

    Article  CAS  Google Scholar 

  65. Zyman Z, Rokhmistrov D, Glushko V, Ivanov I. Thermal impurity reactions and structural changes in slightly carbonated hydroxyapatite. J Mater Sci. 2009;20:1389–99.

    Article  CAS  Google Scholar 

  66. Bonel G. Contribution à l’étude de la carbonation des apatites -1- Synthèse et étude des propriétés physico-chimiques des apatites carbonatées du type A. Ann Chim Fr. 1972;7:65–88.

    CAS  Google Scholar 

  67. Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10−x (PO4)6−x (CO3) x (OH)2−x−2y (CO3) y ceramics with controlled composition. J Eur Ceram Soc. 2008;28:139–47.

    Article  CAS  Google Scholar 

  68. Tõnsuaadu K, Peld M, Leskelä T, Mannonen R, Niinistö L, Veiderma M. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 1995;256:55–65.

    Article  Google Scholar 

  69. Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C. Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct. 2005;744–747:221–8.

    Article  CAS  Google Scholar 

  70. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomater. 2004;25:987–94.

    Article  CAS  Google Scholar 

  71. Lafon J, Champion E, Bernache-Assollant D, Gibert R, Danna A. Termal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;72:1127–34.

    Article  CAS  Google Scholar 

  72. Tõnsuaadu K, Peld M, Bender V. Thermal analysis of apatite structure. J Therm Anal Calorim. 2003;72:363–71.

    Article  Google Scholar 

  73. Zhu Q, Wu J. Effect of initial carbonate content and heat treatments on preparation and properties of carbonated hydroxyapatite. J Chinese Ceramic Soc. 2007;35:866–70.

    CAS  Google Scholar 

  74. Zhu QX, Wu JQ. Investigation on heat treatment of carbonated hydroxyapatite. J Funct Mater. 2007;38:2055–8.

    CAS  Google Scholar 

  75. Barralet J, Knowles JC, Best S, Bonfield W. Thermal decomposition of synthesised carbonate hydroxyapatite. J Mater Sci. 2002;13:529–33.

    Article  CAS  Google Scholar 

  76. Rau J, Cesaro SN, Ferro D, Barinov S, Fadeeva I. FTIR study of carbonate loss from carbonated apatites in the wide temperature range. J Biomed Mater Res Part B. 2004;71B:441–7.

    Article  CAS  Google Scholar 

  77. Vignoles M, Bonel G, Bacquet G. Physicochemical study on phosphocalcium carbonated apatites similar to francolite. Bull Mineral. 1982;105:307–11.

    CAS  Google Scholar 

  78. Perdikatsis B. X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum. 1991;79–82:809–14.

    Article  Google Scholar 

  79. McClellan G, Van Kauwenbergh S. Mineralogy of sedimentary apatites. In: Phosphorite research and development. London: Geological Society; 1990. p. 23–31.

  80. Jemal M, Khattech I. Simultaneous thermogravimetry and gas chromatography during decomposition of carbonate apatites. Thermochim Acta. 1989;152:65–76.

    Article  CAS  Google Scholar 

  81. Callens FJ, Verbeeck RMH, Naessens DE, Matthys PFA, Boesman ER. The effect of carbonate content and drying temperature on the ESR-spectrum near g = 2 of carbonated calciumapatites synthesized from aqueous media. Calcif Tissue Int. 1991;48:249–59.

    Article  CAS  Google Scholar 

  82. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M. F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int. 2010;36:313–22.

    Article  CAS  Google Scholar 

  83. Tõnsuaadu K, Peld M, Quarton M, Bender V, Veiderma M. Studies on SO 2-4 ion incorporation into apatite structure. Phosphorus, Sulfur, Silicon Relat Elem. 2002;177:1873–6.

    Article  Google Scholar 

  84. Khattech I, Jemal M. Décomposition thermique de fluorapatites carbonatées de type b “inverses”. Thermochim Acta. 1987;118:267–75.

    Article  CAS  Google Scholar 

  85. Slósarczyk A, Paszkiewicz Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct. 2005;744–747:657–61.

    Article  CAS  Google Scholar 

  86. Kannan S, Ventura JMG, Lemos AF, Barba A, Ferreira JMF. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram Int. 2008;34:7–13.

    Article  CAS  Google Scholar 

  87. Leskiv M, Lagoa ALC, Urch H, Schwiertz J, Da Piedade Minas ME, Epple M. Energetics of calcium phosphate nanoparticle formation by the reaction of Ca(NO3)2 with (NH4)2HPO4. J Phys Chem C. 2009;113:5478–84.

    Article  CAS  Google Scholar 

  88. Yasukawa A, Kandori K, Ishikawa T. TPD-TG-MS study of carbonate calcium hydroxyapatite particles. Calcif Tissue Int. 2003;72:243–50.

    Article  CAS  Google Scholar 

  89. Hidouri M, Bouzouita K, Kooli F, Khattech I. Thermal behaviour of magnesium-containing fluorapatite. Mater Chem Phys. 2003;80:496–505.

    Article  CAS  Google Scholar 

  90. Ren F, Leng Y, Xin R, Ge X. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–96.

    Article  CAS  Google Scholar 

  91. Marchi J, Dantas ACS, Greil P, Bressiani JC, Bressiani AHA, Müller FA. Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater Res Bull. 2007;42:1040–50.

    Article  CAS  Google Scholar 

  92. Cacciotti I, Bianco A, Lombardi M, Montanaro L. Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc. 2009;29:2969–78.

    Article  CAS  Google Scholar 

  93. Medveckż L, Stulajterovį R, Parilįk L, Trpcevskį J, Durisin J, Barinov SM. Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Coll Surfaces A. 2006;281:221–9.

    Article  CAS  Google Scholar 

  94. Paluszkiewicz C, Slósarczyk A, Pijocha D, Sitarz M, Bucko M, Zima A, Chróscicka A, Lewandowska-Szumiel M. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct. 2010;976:301–9.

    Article  CAS  Google Scholar 

  95. Li MO, Xiao X, Liu R, Chen C, Huang L. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci. 2008;19:797–803.

    Article  CAS  Google Scholar 

  96. Costa AM, Soares GA, Calixto R, Rossi AM. Preparation and properties of zinc containing biphasic calcium phosphate bioceramics. Key Eng Mater. 2004;254–256:119–22.

    Article  Google Scholar 

  97. Loher S, Stark WJ, Maciejewski M, Baiker A, Pratsinis SE, Reichardt D, Maspero F, Krumeich F, Günther D. Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis. Chem Mater. 2004;17:36–42.

    Article  CAS  Google Scholar 

  98. Riad M, Mikhail S. Zinc incorporated hydroxyapatite as catalysts for oxidative desulphurization process. Glob J Res in Eng. 2010;10:85–91.

    Google Scholar 

  99. Guerra-López J, Pomés R, Védova COD, Viña R, Punte G. Influence of nickel on hydroxyapatite crystallization. J Raman Spectrosc. 2001;32:255–61.

    Article  Google Scholar 

  100. Bigi A, Gazzano M, Ripamonti A, Foresti E, Roveri N. Thermal stability of cadmium-calcium hydroxyapatite solid solutions. J Chem Soc Dalton Trans. 1986; 241–4.

  101. Nounah A, Lacout JL. Thermal behavior of cadmium-containing apatites. J Solid State Chem. 1993;107:444–51.

    Article  CAS  Google Scholar 

  102. Silva GWC, Hemmers O, Czerwinski KR, Lindle DW. Investigation of nanostructure and thermal behavior of zinc-substituted fluorapatite. Inorg Chem. 2008;47:7757–67.

    Article  CAS  Google Scholar 

  103. Pasteris JD, Wopenkaa B, Freemana J, Rogersb K, Valsami-Jonesc E, van der Houwenc J, Silvad M. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials. 2004;25:229–38.

    Article  CAS  Google Scholar 

  104. Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, Glimcher MJ. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone. 2000;26:599–602.

    Article  CAS  Google Scholar 

  105. Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–8.

    Article  CAS  Google Scholar 

  106. Shi J, Klocke A, Zhang M, Bismayer U. Thermal behavior of dental enamel and geologic apatite: An infrared spectroscopic study. Am Mineral. 2003;88:1866–71.

    CAS  Google Scholar 

  107. Shi J, Klocke A, Zhang M, Bismayer U. Thermally-induced structural modification of dental enamel apatite: decomposition and transformation of carbonate groups. Eur J Mineral. 2005;17:769–75.

    Article  CAS  Google Scholar 

  108. Etok S, Valsami-Jones E, Wess T, Hiller J, Maxwell C, Rogers K, Manning D, White M, Lopez-Capel E, Collins M, Buckley M, Penkman K, Woodgate S. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807–16.

    Article  CAS  Google Scholar 

  109. Rabelo JS, Ana PA, Benetti C, Valerio MEG, Zezell DM. Changes in dental enamel oven heated or irradiated with Er, Cr:YSGG laser. Analysis by FTIR. Laser Phys. 2010;20:871–5.

    Article  CAS  Google Scholar 

  110. Barralet J, Best SM, Bonfield W. Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. J Mater Sci. 2000; 19–24.

  111. Onishi A, Thomas P, Stuart B, Guerbois J, Forbes S. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92:87–90.

    Article  CAS  Google Scholar 

  112. Grossin D, Rollin-Martinet S, Estournčs C, Rossignol F, Champion E, Combes C, Rey C, Geoffroy C, Drouet C. Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects. Acta Biomater. 2010;6:577–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KT was supported by target financing by the MES of Estonia (Project No SF0140082s08) and the Estonian Science Foundation Grants No. 8207; KAG received support from the Marie Curie grant PIRG05-GA-2009-249306, and jointly with LP from an ESF grant # 2009/0199/1DP/1.1.1.2.0/09/APIA/VIAA/090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaia Tõnsuaadu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tõnsuaadu, K., Gross, K.A., Plūduma, L. et al. A review on the thermal stability of calcium apatites. J Therm Anal Calorim 110, 647–659 (2012). https://doi.org/10.1007/s10973-011-1877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1877-y

Keywords

Navigation