Skip to main content
Log in

Strategies to improve the electrical conductivity of nanoparticle-based antimony-doped tin oxide aerogels

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We present different strategies to improve the electrical conductivity of antimony-doped tin oxide aerogels assembled from preformed nanosized building blocks. By adjusting the annealing atmosphere and temperature conditions, additional UV treatment to remove surface organics prior to annealing and by tuning the antimony content of the nanoparticles, different strategies are employed to influence the properties of the supercritically dried aerogels before and after gelation. In the framework of this study, also the formation of pure SnO2 particle-based aerogels could be achieved. Furthermore, we present an experimental setup for analyzing the electrical conductivity of porous and fragile aerogel monoliths based on a four-point probe. While the annealing atmosphere does not significantly affect the resistivity, UV treatment leads to a resistivity decrease in around 50 %. It is found that the resistivity of the samples can be tuned by altering the antimony content, offering very low-resistivity levels down to 4.5 Ω cm, while the surface areas remained high without significant crystal growth for the doped samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boschloo G, Fitzmaurice D (1999) Spectroelectrochemistry of highly doped nanostructured tin dioxide electrodes. J Phys Chem B 103(16):3093–3098. doi:10.1021/jp9835566

    Article  Google Scholar 

  2. Hou K, Puzzo D, Helander MG, Lo SS, Bonifacio LD, Wang W, Lu Z-H, Scholes GD, Ozin GA (2009) Dye-anchored mesoporous antimony-doped tin oxide electrochemiluminescence cell. Adv Mater 21(24):2492–2496. doi:10.1002/adma.200803330

    Article  Google Scholar 

  3. Lim J, Jeong BY, Yoon HG, Lee S-N, Kim J (2012) Inkjet-printing of antimony-doped tin oxide (ATO) films for transparent conducting electrodes. J Nanosci Nanotechnol 12(2):1675–1678. doi:10.1166/jnn.2012.4622

    Article  Google Scholar 

  4. Luo L, Bozyigit D, Wood V, Niederberger M (2013) High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem Mater 25(24):4901–4907. doi:10.1021/cm4030149

    Article  Google Scholar 

  5. Shanthi E, Dutta V, Banerjee A, Chopra KL (1980) Electrical and optical properties of undoped and antimony-doped tin oxide films. J Appl Phys 51(12):6243–6251. doi:10.1063/1.327610

    Article  Google Scholar 

  6. Zeng G, Shi N, Hess M, Chen X, Cheng W, Fan T, Niederberger M (2015) A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 9(4):4227–4235. doi:10.1021/acsnano.5b00576

    Article  Google Scholar 

  7. Correa Baena JP, Agrios AG (2014) Antimony-doped tin oxide aerogels as porous electron collectors for dye-sensitized solar cells. J Phys Chem C 118(30):17028–17035. doi:10.1021/jp500542v

    Article  Google Scholar 

  8. Rainwater BH, Liu M, Liu M (2012) A more efficient anode microstructure for SOFCs based on proton conductors. Int J Hydrogen Energy 37(23):18342–18348. doi:10.1016/j.ijhydene.2012.09.027

    Article  Google Scholar 

  9. Moir J, Soheilnia N, O’Brien P, Jelle A, Grozea CM, Faulkner D, Helander MG, Ozin GA (2013) Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode. ACS Nano 7(5):4261–4274. doi:10.1021/nn400744d

    Article  Google Scholar 

  10. Rolison DR, Dunn B (2001) Electrically conductive oxide aerogels: new materials in electrochemistry. J Mater Chem 11(4):963–980. doi:10.1039/B007591O

    Article  Google Scholar 

  11. Correa Baena JP, Agrios AG (2014) Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl Mater Interfaces 6(21):19127–19134. doi:10.1021/am505115x

    Article  Google Scholar 

  12. Gaponik N, Herrmann A-K, Eychmüller A (2012) Colloidal nanocrystal-based gels and aerogels: material aspects and application perspectives. J Phys Chem Lett 3(1):8–17. doi:10.1021/jz201357r

    Article  Google Scholar 

  13. Kim D-W, Kim D-S, Kim Y-G, Kim Y-C, Oh S-G (2006) Preparation of hard agglomerates free and weakly agglomerated antimony doped tin oxide (ATO) nanoparticles by coprecipitation reaction in methanol reaction medium. Mater Chem Phys 97(2–3):452–457. doi:10.1016/j.matchemphys.2005.08.046

    Article  Google Scholar 

  14. Hammarberg E, Prodi-Schwab A, Feldmann C (2008) Microwave-assisted synthesis of indium tin oxide nanocrystals in polyol media and transparent, conductive layers thereof. Thin Solid Films 516(21):7437–7442. doi:10.1016/j.tsf.2008.02.048

    Article  Google Scholar 

  15. Müller V, Rasp M, Stefanic G, Ba J, Günther S, Rathousky J, Niederberger M, Fattakhova-Rohlfing D (2009) Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol–gel procedure. Chem Mater 21(21):5229–5236. doi:10.1021/cm902189r

    Article  Google Scholar 

  16. Luo L, Rossell MD, Xie D, Erni R, Niederberger M (2012) Microwave-assisted nonaqueous sol–gel synthesis: from Al:ZnO nanoparticles to transparent conducting films. ACS Sustain Chem Eng 1(1):152–160. doi:10.1021/sc300073d

    Google Scholar 

  17. Luo L, Häfliger K, Xie D, Niederberger M (2013) Transparent conducting Sn:ZnO films deposited from nanoparticles. J Sol-Gel Sci Technol 65(1):28–35. doi:10.1007/s10971-012-2709-7

    Article  Google Scholar 

  18. Esro M, Georgakopoulos S, Lu H, Vourlias G, Krier A, Milne WI, Gillin WP, Adamopoulos G (2016) Solution processed SnO2:Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. J Mater Chem C 4(16):3563–3570. doi:10.1039/C5TC04117A

    Article  Google Scholar 

  19. Leite ER, Giraldi TR, Pontes FM, Longo E, Beltran A, Andres J (2003) Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Appl Phys Lett 83(8):1566–1568. doi:10.1063/1.1605241

    Article  Google Scholar 

  20. Lee EJH, Ribeiro C, Longo E, Leite ER (2006) Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions. Chem Phys 328(1–3):229–235. doi:10.1016/j.chemphys.2006.06.032

    Article  Google Scholar 

  21. Zhuang Z, Zhang J, Huang F, Wang Y, Lin Z (2009) Pure multistep oriented attachment growth kinetics of surfactant-free SnO2 nanocrystals. Phys Chem Chem Phys 11(38):8516–8521. doi:10.1039/b907967j

    Article  Google Scholar 

  22. Stroppa DG, Montoro LA, Beltrán A, Conti TG, da Silva RO, Andrés J, Longo E, Leite ER, Ramirez AJ (2009) Unveiling the chemical and morphological features of Sb–SnO2 nanocrystals by the combined use of high-resolution transmission electron microscopy and ab initio surface energy calculations. J Am Chem Soc 131(40):14544–14548. doi:10.1021/ja905896u

    Article  Google Scholar 

  23. Heiligtag FJ, Rossell MD, Süess MJ, Niederberger M (2011) Template-free co-assembly of preformed Au and TiO2 nanoparticles into multicomponent 3D aerogels. J Mater Chem 21(42):16893–16899. doi:10.1039/c1jm11740h

    Article  Google Scholar 

  24. Rechberger F, Ilari G, Niederberger M (2014) Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths. Chem Commun 50(86):13138–13141. doi:10.1039/C4CC05648E

    Article  Google Scholar 

  25. Terrier C, Chatelon JP, Roger JA, Berjoan R, Dubois C (1997) Analysis of antimony doping in tin oxide thin films obtained by the sol–gel method. J Sol-Gel Sci Technol 10(1):75–81. doi:10.1023/A:1018388306674

    Article  Google Scholar 

  26. Nakanishi Y, Suzuki Y, Nakamura T, Hatanaka Y, Fukuda Y, Fujisawa A, Shimaoka G (1991) Coloration of Sn–Sb–O thin films. Appl Surf Sci 48–49:55–58. doi:10.1016/0169-4332(91)90307-6

    Article  Google Scholar 

  27. Kojima M, Kato H, Gatto M (1993) Blackening of tin oxide thin films heavily doped with antimony. Philos Mag B 68(2):215–222. doi:10.1080/01418639308226402

    Article  Google Scholar 

  28. Terrier C, Chatelon JP, Berjoan R, Roger JA (1995) Sb-doped SnO2 transparent conducting oxide from the sol–gel dip-coating technique. Thin Solid Films 263(1):37–41. doi:10.1016/0040-6090(95)06543-1

    Article  Google Scholar 

  29. Nütz T, Zum Felde U, Haase M (1999) Wet-chemical synthesis of doped nanoparticles: blue-colored colloids of n-doped SnO2:Sb. J Chem Phys 110(24):12142–12150. doi:10.1063/1.479151

    Article  Google Scholar 

  30. Nütz T, Haase M (2000) Wet-chemical synthesis of doped nanoparticles: optical properties of oxygen-deficient and antimony-doped colloidal SnO2. J Phys Chem B 104(35):8430–8437. doi:10.1021/jp001932s

    Article  Google Scholar 

  31. Rockenberger J, Zum Felde U, Tischer M, Tröger L, Haase M, Weller H (2000) Near edge X-ray absorption fine structure measurements (XANES) and extended X-ray absorption fine structure measurements (EXAFS) of the valence state and coordination of antimony in doped nanocrystalline SnO2. J Chem Phys 112(9):4296–4304. doi:10.1063/1.480975

    Article  Google Scholar 

  32. Elangovan E, Ramamurthi K (2003) Studies on optical properties of polycrystalline SnO2:Sb thin films prepared using SnCl2 precursor. Cryst Res Technol 38(9):779–784. doi:10.1002/crat.200310095

    Article  Google Scholar 

  33. Senthilkumar V, Vickraman P, Prince JJ, Jayachandran M, Sanjeeviraja C (2010) Effects of annealing temperature on structural, optical, and electrical properties of antimony-doped tin oxide thin films. Philos Mag Lett 90(5):337–347. doi:10.1080/09500831003662529

    Article  Google Scholar 

  34. Niederberger M, Pinna N (2009) Metal oxide nanoparticles in inorganic solvents—synthesis, formation, assembly and application. Springer, Berlin

    Google Scholar 

  35. Wang JH, Ray MB (2000) Application of ultraviolet photooxidation to remove organic pollutants in the gas phase. Sep Purif Technol 19(1–2):11–20. doi:10.1016/S1383-5866(99)00078-7

    Article  Google Scholar 

  36. Brokken-Zijp JCM, van Asselen OLJ, Kleinjan WE, van de Belt R, de With G (2011) Photocatalytic properties of tin oxide and antimony-doped tin oxide nanoparticles. J Nanotechnol 2011:1–15. doi:10.1155/2011/106254

    Article  Google Scholar 

  37. Baumann TF, Kucheyev SO, Gash AE, Satcher JH (2005) Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv Mater 17(12):1546–1548. doi:10.1002/adma.200500074

    Article  Google Scholar 

  38. Harrison PG, Guest A (1987) Tin oxide surfaces. Part 17—an infrared and thermogravimetric analysis of the thermal dehydration of tin(IV) oxide gel. J Chem Soc Faraday Trans 83(11):3383–3397. doi:10.1039/F19878303383

    Article  Google Scholar 

  39. Wu N-L, Wu L-F, Yang Y-C, Huang S-J (1996) Spontaneous solution-sol–gel process for preparing tin oxide monolith. J Mater Res 11(04):813–820. doi:10.1557/JMR.1996.0098

    Article  Google Scholar 

  40. Harreld JH, Sakamoto J, Dunn B (2003) Non-hydrolytic sol–gel synthesis and electrochemical characterization of tin-based oxide aerogels. J Power Sources 115(1):19–26. doi:10.1016/S0378-7753(02)00626-2

    Article  Google Scholar 

  41. Huang R, Hou L, Zhou B, Zhao Q, Ren S (2005) Formation and characterization of tin oxide aerogel derived from sol–gel process based on tetra(n-butoxy)tin(IV). J Non-Cryst Solids 351(1):23–28. doi:10.1016/j.jnoncrysol.2004.09.023

    Article  Google Scholar 

  42. Davis M, Zhang K, Wang S, Hope-Weeks LJ (2012) Enhanced electrical conductivity in mesoporous 3D indium-tin oxide materials. J Mater Chem 22(38):20163–20165. doi:10.1039/C2JM34744J

    Article  Google Scholar 

  43. Skoromets V, Němec H, Kopeček J, Kužel P, Peters K, Fattakhova-Rohlfing D, Vetushka A, Müller M, Ganzerová K, Fejfar A (2015) Conductivity mechanisms in Sb-doped SnO2 nanoparticle assemblies: DC and terahertz regime. J Phys Chem C 119(33):19485–19495. doi:10.1021/acs.jpcc.5b05091

    Article  Google Scholar 

  44. Liu W, Cao L (2001) Electronic structure of the doped SnO2. Sci China Ser B 44(1):63–67. doi:10.1007/bf02879737

    Article  Google Scholar 

  45. Qin G, Gao F, Jiang Q, Li Y, Liu Y, Luo L, Zhao K, Zhao H (2016) Well-aligned Nd-doped SnO2 nanorod layered arrays: preparation, characterization and enhanced alcohol-gas sensing performance. Phys Chem Chem Phys 18(7):5537–5549. doi:10.1039/C5CP07174G

    Article  Google Scholar 

  46. Xu C, Tamaki J, Miura N, Yamazoe N (1992) Stabilization of SnO2 ultrafine particles by additives. J Mater Sci 27(4):963–971. doi:10.1007/bf01197649

    Article  Google Scholar 

  47. Mao W, Xiong B, Li Q, Zhou Y, Yin C, Liu Y, He C (2015) Influences of defects and Sb valence states on the temperature dependent conductivity of Sb doped SnO2 thin films. Phys Lett A 379(36):1946–1950. doi:10.1016/j.physleta.2015.06.033

    Article  Google Scholar 

  48. Müller V, Rasp M, Rathousky J, Schütz B, Niederberger M, Fattakhova-Rohlfing D (2010) Transparent conducting films of antimony-doped tin oxide with uniform mesostructure assembled from preformed nanocrystals. Small 6(5):633–637. doi:10.1002/smll.200901887

    Article  Google Scholar 

  49. Müller V, Rasp M, Stefanic G, Günther S, Rathousky J, Niederberger M, Fattakhova-Rohlfing D (2011) Antimony doped tin oxide nanoparticles and their assembly in mesostructured film. Phys Status Solidi C 8(6):1759–1763. doi:10.1002/pssc.201000129

    Article  Google Scholar 

  50. Conti TG, Chiquito AJ, Da Silva RO, Longo E, Leite ER (2010) Electrical properties of highly conducting SnO2:Sb nanocrystals synthesized using a nonaqueous sol–gel method. J Am Ceram Soc 93(11):3862–3866. doi:10.1111/j.1551-2916.2010.03979.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank ETH Zurich and the Swiss National Science Foundation (Project 200021_165888) for financial support. We thank the Scientific Center for Optical and Electron Microscopy (SCOPEM) of ETH Zurich for the use of the TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Niederberger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechberger, F., Städler, R., Tervoort, E. et al. Strategies to improve the electrical conductivity of nanoparticle-based antimony-doped tin oxide aerogels. J Sol-Gel Sci Technol 80, 660–666 (2016). https://doi.org/10.1007/s10971-016-4156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4156-3

Keywords

Navigation