Skip to main content
Log in

A photoresponsive azobenzene-bridged cubic silsesquioxane network

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

An azobenzene (AZO)-bridged cubic silsesquioxane network exhibiting reversible photoisomerization behavior in nonpolar solvents has been prepared via hydrosilylation reaction between 4,4′-diallyloxy-azobenzene and octahydridosilsesquioxane (H8Si8O12; H-POSS). Approximately 70 % of the corner Si–H groups of H-POSS are reacted to form a three-dimensional gel network while maintaining the cubic siloxane structure. The dried gel has a high thermal stability, which is attributed to the highly cross-linked cubic silsesquioxane network where AZOs are covalently incorporated in the main chain. The gel exhibits reversible swelling behavior in nonpolar solvents during wetting–drying cycles. In toluene, a large extent of reversible transcis isomerization of the AZO moiety is observed. These results are promising for the design of a new class of photoresponsive materials applicable in host–guest chemistry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  Google Scholar 

  2. Hu LC, Shea KJ (2011) Organo–silica hybrid functional nanomaterials: How do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem Soc Rev 40:688–695

    Article  Google Scholar 

  3. Ruiz-Hitzky E, Aranda P, Dardera M, Ogawa M (2011) Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chem Soc Rev 40:801–828

    Article  Google Scholar 

  4. Orgiu E, Samor P (2014) 25th Anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv Mater 26:1827–1845

    Article  Google Scholar 

  5. Tanaka T, Ogino H, Iwamoto M (2007) Photochange in pore diameters of azobenzene-planted mesoporous silica materials. Langmuir 23:11417–11420

    Article  Google Scholar 

  6. Alvaro M, Benitez M, Das D, Garcia H, Peris E (2005) Reversible porosity changes in photoresponsive azobenzene-containing periodic mesoporous silicas. Chem Mater 17:4958–4964

    Article  Google Scholar 

  7. Besson E, Mehdi A, Lerner DA, Reyé C, Corriu RJP (2005) Photoresponsive ordered hybrid materials containing a bridged azobenzene group. J Mater Chem 15:803–809

    Article  Google Scholar 

  8. Guo S, Sugawara-Narutaki A, Okubo T, Shimojima A (2013) Synthesis of ordered photoresponsive azobenzene–siloxane hybrids by self-assembly. J. Mater. Chem. C 1:6989–6995

    Article  Google Scholar 

  9. Guo S, Chaikittisilp W, Okubo T, Shimojima A (2014) Azobenzene–siloxane hybrids with lamellar structures from bridge-type alkoxysilyl precursors. RSC Adv. 4:25319–25325

    Article  Google Scholar 

  10. Guo S, Matsukawa K, Miyata T, Okubo T, Kuroda K, Shimojima A (2015) Photoinduced bending of self-assembled azobenzene–siloxane hybrid. J Am Chem Soc 137:15434–15440

    Article  Google Scholar 

  11. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746

    Article  Google Scholar 

  12. Xiao S, Nguyen M, Gong X, Cao Y, Wu H, Moses D, Heeger AJ (2003) Stabilization of semiconducting polymers with silsesquixane. Adv Funct Mater 13:25–29

    Article  Google Scholar 

  13. Joshi M, Butola BS (2004) Polymeric nanocomposites–polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J. Macromol. Sci. Part C 44(4):389–410

    Article  Google Scholar 

  14. Chaikittisilp W, Sugawara A, Shimojima A, Okubo T (2010) Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units. Chem Eur J 16:6006–6014

    Article  Google Scholar 

  15. Chaikittisilp W, Sugawara A, Shimojima A, Okubo T (2010) Microporous hybrid polymer with a certain crystallinity built from functionalized cubic siloxane cages as a singular building Unit. Chem Mater 22:4841–4843

    Article  Google Scholar 

  16. Jiang C, Yang W, Li L, Hou Y, Zhao X, Liu H (2015) An efficient approach to octabromophenylethyl functionalized cage silsesquioxane and its use in constructing hybrid porous materials. Eur J Inorg Chem 3835–3842

  17. Wang S, Tan L, Zhang C, Hussain I, Tan B (2015) Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies. J. Mater. Chem. A 3:6542–6548

    Article  Google Scholar 

  18. Lo MY, Zhen C, Lauters M, Jabbour GE, Sellinger A (2007) Organic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. J Am Chem Soc 129:5808–5809

    Article  Google Scholar 

  19. Zhu YK, Guang SY, Su XY, Xu HY, Liu XY (2013) Highly efficient and stable solid-state luminescent nanohybrids: precise architecture and enhancement mechanism. J Mater Res 28:1061–1069

    Article  Google Scholar 

  20. Chi H, Mya KY, Lin T, He C, Wang F, Chin WS (2013) Thermally stable azobenzene dyes through hybridization with POSS. N J. Chem. 37:735–742

    Article  Google Scholar 

  21. Liu Y, Yang W, Liu H (2015) Azobenzene-functionalized cage silsesquioxanes as inorganic–organic hybrid, photoresponsive, nanoscale, building blocks. Chem Eur J 21:4731–4738

    Article  Google Scholar 

  22. Bialecka-Florjanczyk E, Soltysiak JT (2011) Synthesis and characterization of liquid crystalline silsesquioxanes containing azobenzene groups. Mol Cryst Liq Cryst 548:28–36

    Article  Google Scholar 

  23. Ledin PA, Tkachenko IM, Xu W, Choi I, Shevchenko V, Tsukruk VV (2014) Star-shaped molecules with polyhedral oligomeric silsesquioxane core and azobenzene dye arms. Langmuir 30:8856–8865

    Article  Google Scholar 

  24. Ledin PA, Russell M, Geldmeier JA, Tkachenko IM, Mahmoud MA, Shevchenko VM, El-Sayed A, Tsukruk VV (2015) Light-responsive plasmonic arrays consisting of silver nanocubes and a photoisomerizable matrix. ACS Appl. Mater. Interfaces 7:4902–4912

    Article  Google Scholar 

  25. Miniewicz A, Girones J, Karpinski P, Mossety-Leszczak B, Galina H, Dutkiewicz M (2014) Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J. Mater. Chem. C 2:432–440

    Article  Google Scholar 

  26. Miniewicz A, Tomkowicz M, Karpinski P, Sznitko L, Mossety-Leszczak B, Dutkiewicz M (2015) Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles. Chem Phys 456:65–72

    Article  Google Scholar 

  27. Su X, Guang S, Xu H, Yang J, Song Y (2010) The preparation and optical limiting properties of POSS-based molecular hybrid functional materials. Dyes Pigments 87:69–75

    Article  Google Scholar 

  28. Zhou J, Zhao Y, Yu K, Zhou X, Xie X (2011) Synthesis, thermal stability and photoresponsive behaviors of azobenzene-tethered polyhedral oligomeric silsesquioxanes. N J. Chem. 35:2781–2792

    Article  Google Scholar 

  29. Su X, Guang S, Xu H, Liu X, Li S, Wang X, Deng Y, Wang P (2009) Controllable preparation and optical limiting properties of POSS-based functional hybrid nanocomposites with different molecular architectures. Macromolecules 42:8969–8976

    Article  Google Scholar 

  30. Huang J, Huang Y, He C, Gao Y (2015) Synthesis and characterization of photoresponsive POSS-based polymers and their switchable water and oil wettability on cotton fabric. RSC Adv. 5:100339–100346

    Article  Google Scholar 

  31. Wang XT, Yang YK, Yang ZF, Zhou XP, Liao YG, Lv CC, Chang FC, Xie XL (2010) Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim 102:739–744

    Article  Google Scholar 

  32. Wang X, Yang Y, Gao P, Yang F, Shen H, Gao H, Wu D (2015) Synthesis, self-assembly, and photoresponsive behavior of tadpole-shaped azobenzene polymers. ACS Macro. Lett. 4:1321–1326

    Article  Google Scholar 

  33. Agaskar PA (1991) New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5 h-H10Si10O15. Inorg Chem 30:2707–2708

    Article  Google Scholar 

  34. Zhou G, Smid J (1991) Hydrosilylation of m-TMI: new siloxane based aliphatic polyisocyanates. J Polym Sci, Part A: Polym Chem 29:1097–1105

    Article  Google Scholar 

  35. Carniato F, Bisio C, Gatti G, Boccaleri E, Bertinetti L, Coluccia S, Monticelli O, Marchese L (2009) Titanosilsesquioxanes embedded in synthetic clay as a hybrid material for polymer science. Angew Chem Int Ed 48:6059–6061

    Article  Google Scholar 

  36. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc 123:11420–11430

    Article  Google Scholar 

  37. Deng Y, Li Y, Wang X (2006) Colloidal sphere formation, H-aggregation, and photoresponsive properties of an amphiphilic random copolymer bearing branched azo side chains. Macromolecules 39:6590–6598

    Article  Google Scholar 

  38. Yi Q, Sukhorukov GB (2014) UV-induced disruption of microcapsules with azobenzene groups. Soft Matter 10:1384–1391

    Article  Google Scholar 

  39. Shankar BV, Patnaik A (2006) J-aggregates in matrix stabilized two-dimensional azobenzene derivatives. J Colloid Interface Sci 302:259–266

    Article  Google Scholar 

  40. Haruta O, Matsuo Y, Ijiro K (2008) Photo-induced fluorescence emission enhancement of azobenzene thin films. Colloids Surfaces A: Physicochem. Eng. Aspects 313–314:595–599

    Article  Google Scholar 

  41. Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825

    Article  Google Scholar 

  42. Ichimura K (2015) Photoisomerisation of azobenzene crystals in aqueous dispersions examined by higher order derivative spectra. Phys Chem Chem Phys 17:2722–2733

    Article  Google Scholar 

  43. Ichimura K, Nagano S (2014) Individual photoreorientation of non-aggregated and aggregated azobenzene side chains tethered to a liquid-crystalline polymer determined by higher order derivative spectra. RSC Adv. 4:52379–52383

    Article  Google Scholar 

  44. Moitra N, Kanamori K, Shimada T, Takeda K, Ikuhara YH, Gao X, Nakanishi K (2013) Synthesis of hierarchically porous hydrogen silsesquioxane monoliths and embedding of metal nanoparticles by on-site reduction. Adv Funct Mater 23:2714–2722

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas ‘New Polymeric Materials Based on Element-Blocks (No. 2401)’ provided by The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Shimojima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Okubo, T., Kuroda, K. et al. A photoresponsive azobenzene-bridged cubic silsesquioxane network. J Sol-Gel Sci Technol 79, 262–269 (2016). https://doi.org/10.1007/s10971-016-4074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4074-4

Keywords

Navigation