Skip to main content
Log in

Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin

  • Published:
Journal of Structural and Functional Genomics

Abstract

Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin’s remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aaRSs:

Aminoacyl-tRNA synthetases

AMP-PNP:

Adenosine 5′-(β,γ-imido)triphosphate

ASU:

Asymmetric unit

ATP:

Adenosine triphosphate

CCDC:

Cambridge crystallographic data centre

MST:

Microscale thermophoresis

PDB:

Protein data bank

PfKRS:

Plasmodium falciparum lysyl-tRNA synthetase

PfKRS-K-C:

PfKRS-lysine-cladosporin

RMSD:

Root-mean-square-deviation

References

  1. Hoepfner D, McNamara CW, Lim CS, Studer C, Riedl R et al (2012) Cell Host Microbe 11:654–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ibba M, Soll D (2000) Annu Rev Biochem 69:617–650

    Article  CAS  PubMed  Google Scholar 

  3. Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V et al (2009) BMC Genomics 10:644

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bhatt TK, Khan S, Dwivedi VP, Banday MM, Sharma A et al (2011) Nat Commun 2:530

    Article  PubMed  Google Scholar 

  5. Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA et al (2011) Proc Natl Acad Sci USA 108:1627–1632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jackson KE, Habib S, Frugier M, Hoen R, Khan S et al (2011) Trends Parasitol 27:467–476

    Article  CAS  PubMed  Google Scholar 

  7. Khan S, Sharma A, Jamwal A, Sharma V, Pole AK et al (2011) Sci Rep 1:188

    Article  PubMed Central  PubMed  Google Scholar 

  8. Khan S, Garg A, Camacho N, Van Rooyen J, Kumar Pole A et al (2013) Acta Crystallogr D Biol Crystallogr 69:785–795

    Article  CAS  PubMed  Google Scholar 

  9. Khan S, Garg A, Sharma A, Camacho N, Picchioni D et al (2013) PLoS One 8:e66224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Azcarate IG, Marin-Garcia P, Camacho N, Perez-Benavente S, Puyet A et al (2013) Br J Pharmacol 169:645–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hoen R, Novoa EM, Lopez A, Camacho N, Cubells L et al (2013) ChemBioChem 14:499–509

    Article  CAS  PubMed  Google Scholar 

  12. Filisetti D, Theobald-Dietrich A, Mahmoudi N, Rudinger-Thirion J, Candolfi E et al (2013) J Biol Chem 288:36361–36371

    Article  CAS  PubMed  Google Scholar 

  13. Koh CY, Kim JE, Napoli AJ, Verlinde CL, Fan E et al (2013) Mol Biochem Parasitol 189:26–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mailu BM, Ramasamay G, Mudeppa DG, Li L, Lindner SE, Peterson MJ et al (2013) J Biol Chem 288:32539–32552

    Article  CAS  PubMed  Google Scholar 

  15. Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CF et al (2014) Int J Parasitol Drugs Drug Resist 4:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  16. Cattel L, Grove JF, Shaw D (1973) J Chem Soc Perkin 1(21):2626–2629

    Article  Google Scholar 

  17. Jacyno JM, Harwood JS, Cutler HG, Lee MK (1993) J Nat Prod 56:1397–1401

    Article  CAS  PubMed  Google Scholar 

  18. Zheng H, Zhao C, Fang B, Jing P, Yang J et al (2012) J Org Chem 77:5656–5663

    Article  CAS  PubMed  Google Scholar 

  19. Guo M, Ignatov M, Musier-Forsyth K, Schimmel P, Yang XL (2008) Proc Natl Acad Sci USA 105:2331–2336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  21. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW et al (2010) Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA et al (2011) Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM et al (2010) Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al (2004) J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  28. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134

    Article  CAS  PubMed  Google Scholar 

  29. Niesen FH, Berglund H, Vedadi M (2007) Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  30. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Nat Commun 1:100

    Article  PubMed  Google Scholar 

  31. Le Guilloux V, Schmidtke P, Tuffery P (2009) BMC Bioinform 10:168

    Article  Google Scholar 

  32. Doerig C, Baker D, Billker O, Blackman MJ, Chitnis C et al (2009) Parasite 16:169–182

    Article  CAS  PubMed  Google Scholar 

  33. Hora R, Bridges DJ, Craig A, Sharma A (2009) J Biol Chem 284:6260–6269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sharma A, Yogavel M, Akhouri RR, Gill J, Sharma A (2008) J Biol Chem 283:24077–24088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gill J, Yogavel M, Kumar A, Belrhali H, Jain SK et al (2009) J Biol Chem 284:10076–10087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Bart Staker, Seattle Structural Genomics Center for Infectious Disease (SSGCID), for supplying cladosporin. This research was supported by Department of Biotechnology, Government of India OSRP Grant PR6303 to AS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Sharma, A., Belrhali, H. et al. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. J Struct Funct Genomics 15, 63–71 (2014). https://doi.org/10.1007/s10969-014-9182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-014-9182-1

Keywords

Navigation