Skip to main content
Log in

Radionuclide removal from aqueous solutions using potassium ferrate(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The paper describes the effectiveness of uranium(VI) and europium(III) removal from aqueous solutions using potassium ferrate(VI) at different pH values. The removal of a mixture of alpha- and beta-emitting radionuclides (137Cs(I), 90Sr(II), 152Eu(III), 243Am(III), 239Pu(IV), 237+239Np(V), 238+233U(VI)) from synthetic fresh water and simulated seawater has been checked as well. There is an indication that potassium ferrate(VI) could be used as an effective scavenger for almost all investigated radionuclides except cesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lieser ΚH (1995) Radionuclides in the geosphere: sources, mobility, reactions in natural waters and interactions with solids. Radiochim Acta 70–71:355–375

    Google Scholar 

  2. Eisenbud M, Gesell T (1997) Environmental radioactivity from natural, industrial, and military sources, 4th edn. Academic Press, San Diego

    Google Scholar 

  3. Stegnar P, Shishkov I, Burkitbayev M, Tolongutov B, Yunusov M, Radyuk R, Salbu B (2013) Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia. J Environ Radioact 123:3–13

    Article  CAS  Google Scholar 

  4. Tominaga T, Hachiya M, Tatsuzaki H, Akashi M (2014) The accident at the fukushima daiichi nuclear power plant in 2011. Health Phys 106(6):630–637

    Article  CAS  Google Scholar 

  5. Waseem A, Ullah H, Rauf MK, Ahmad I (2015) Distribution of natural uranium in surface and groundwater resources: a review. Crit Rev Environ Sci Technol 45(22):2391–2423

    Article  CAS  Google Scholar 

  6. Anderson RF, Fleer AP (1982) Determination of natural actinides and plutonium in marine particulate material. Anal Chem 54(7):1142–1147

    Article  CAS  Google Scholar 

  7. Peretrukhin VF, Silin VI, Kareta AV, Gelis AV, Shilov VP, German KE, Firsova EV, Maslennikov AG, Trushina VE (1998) Purification of alkaline solutions and wastes from actinides and technetium by coprecipitation with some carriers using the method of appearing reagents: Final Report. Pacific Northwest National Lab, Richland

    Book  Google Scholar 

  8. Romanchuk AY, Kalmykov SN (2014) Actinides sorption onto hematite: experimental data, surface complexation modeling and linear free energy relationship. Radiochim Acta 102(4):303–310

    Article  CAS  Google Scholar 

  9. Adegoke HI, Adekola FA, Fatoki OS, Ximba BJ (2014) Adsorption of Cr(VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J Chem Eng 31(1):142–154

    Article  CAS  Google Scholar 

  10. Emerson HP, Powell BA (2015) Observations of surface-mediated reduction of Pu(VI) to Pu(IV) on hematite nanoparticles by ATR FT-IR. Radiochim Acta 103(8):553–563

    Article  CAS  Google Scholar 

  11. Solo HM, Waite TD (1989) Direct-Filtration of ground-water using iron (VI) ferrate—A pilot-study. Abst Am Chem Soc 198:119

    Google Scholar 

  12. Jiang JQ, Wang S, Panagoulopoulos A (2006) The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere 63(2):212–219

    Article  CAS  Google Scholar 

  13. Jiang JQ (2007) Research progress in the use of ferrate (VI) for the environmental remediation. J Hazard Mater 146(3):617–623

    Article  CAS  Google Scholar 

  14. Murmann RK, Robinson PR (1974) Experiments utilizing FeO4 2− for purifying water. Water Res 8(8):543–547

    Article  CAS  Google Scholar 

  15. Bartzatt R, Cano M, Johnson L, Nagel D (1992) Removal of toxic metals and nonmetals from contaminated water. J Toxicol Environ Health A 35(4):205–210

    Article  CAS  Google Scholar 

  16. Potts ME, Churchwell DR (1994) Removal of radionuclides in wastewaters utilizing potassium ferrate(VI). Water Environ Res 66(2):107–109

    Article  CAS  Google Scholar 

  17. Yu Stupin D, Ozernoi MI (1995) Coprecipitation of 152Eu with Iron(III) hydroxide formed upon reduction of sodium ferrate(VI) in aqueous medium. Radiochemistry 37(4):329–332

    Google Scholar 

  18. Sylvester P, Rutherford LA, Gonzalez-Martin A, Kim J, Rapko BM, Lumetta GJ (2001) Ferrate treatment for removing chromium from high-level radioactive tank waste. Environ Sci Technol 35(1):216–221

    Article  CAS  Google Scholar 

  19. Filip J, Yngard RA, Siskova K, Marusak Z, Ettler V, Sajdl P, Sharma VK, Zboril R (2011) Mechanisms and efficiency of the simultaneous removal of metals and cyanides by using ferrate (VI): crucial roles of nanocrystalline iron (III) oxyhydroxides and metal carbonates. Chem-Eur J 17(36):10097–10105

    Article  CAS  Google Scholar 

  20. Perfil’ev Yu D, Kalmykov SN, Potapova EE, Dedushenko SK (2013) Interaction of Sr(II) and Np(V) with Potassium ferrate(VI) reduction products in aqueous solutions. Radiochemistry 55(1):98–100

    Article  Google Scholar 

  21. Krot N, Shilov V, Bessonov A, Budantseva N, Charushnikova I, Perminov V, Astafurova L (1996) Investigation on the coprecipitation of transuranium elements from alkaline solutions by the method of appearing reagents. Westinghouse Hanford Company, Richland

    Book  Google Scholar 

  22. Volkova TS, Medvedev VP, Fedorova OV (2011) Coagulation treatment of radioactively contaminated waters using sodium ferrate. Radiochemistry 53(3):308–313

    Article  CAS  Google Scholar 

  23. Prucek R, Tuček J, Kolařík J, Filip J, Marušák Z, Sharma VK, Zbořil R (2013) Ferrate(VI)-Induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environ Sci Technol 47(7):3283–3292

    CAS  Google Scholar 

  24. Prucek R, Tuček J, Kolařík J, Hušková I, Filip J, Varma RS, Sharma VK, Zbořil R (2015) Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. Environ Sci Technol 49(4):2319–2327

    Article  CAS  Google Scholar 

  25. Waite TD, Gilbert M (1978) Oxidative destruction of phenol and other organic water residuals by iron (VI) ferrate. J Water Pollut Control Fed 50(3):543–551

    CAS  Google Scholar 

  26. Yuan BL, Qu JH, Fu ML (2002) Removal of cyanobacterial microcystin-LR by ferrate oxidation–coagulation. Toxicon 40(8):1129–1134

    Article  CAS  Google Scholar 

  27. Ma J, Liu W (2002) Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation. Water Res 36(4):871–878

    Article  CAS  Google Scholar 

  28. Jiang JQ, Wang S (2003) Enhanced coagulation with potassium ferrate(VI) for removing humic substances. Environ Eng Sci 20(6):627–633

    Article  CAS  Google Scholar 

  29. Qu JH, Liu HJ, Liu SX, Lei PJ (2003) Reduction of fulvic acid in drinking water by ferrate. J Environ Eng 129(1):17–24

    Article  CAS  Google Scholar 

  30. Lee Y, Yoon J, von Gunten U (2005) Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environ Sci Technol 39(22):8978–8984

    Article  CAS  Google Scholar 

  31. Jiang JQ, Wang S, Panagoulopoulos A (2007) The role of potassium ferrate (VI) in the inactivation of Escherichia coli and in the reduction of COD for water remediation. Desalination 210(1):266–273

    Article  CAS  Google Scholar 

  32. Lee C, Lee Y, Schmidt C, Yoon J, von Gunten U (2008) Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): kinetics and effect on the NDMA formation potential of natural waters. Water Res 42(1–2):433–441

    Article  CAS  Google Scholar 

  33. Sharma VK, Li XZ, Graham N, Doong RA (2008) Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water. J Water Supply Res Technol 57(6):419–426

    Article  CAS  Google Scholar 

  34. Lee Y, von Gunten U (2010) Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). Water Res 44(2):555–566

    Article  CAS  Google Scholar 

  35. Sharma VK, Luther GW III, Millero FJ (2011) Mechanisms of oxidation of organosulfur compounds by ferrate (VI). Chemosphere 82(8):1083–1089

    Article  CAS  Google Scholar 

  36. Anquandah GAK, Sharma VK, Knight DA, Batchu SR, Gardinali PR (2011) Oxidation of trimethoprim by ferrate (VI): kinetics, products, and antibacterial activity. Environ Sci Technol 45(24):10575–10581

    Article  CAS  Google Scholar 

  37. Moulin V, Moulin C (1995) Fate of actinides in the presence of humic substances under conditions relevant to nuclear waste disposal. Appl Geochem 10(5):573–580

    Article  CAS  Google Scholar 

  38. McCarthy JF, Czerwinski KR, Sanford WE, Jardine PM, Marsh JD (1998) Mobilization of transuranic radionuclides from disposal trenches by natural organic matter. J Contam Hydrol 30(1):49–77

    Article  CAS  Google Scholar 

  39. Seibert A, Mansel A, Marquardt CM, Keller H, Kratz JV, Trautmann N (2001) Complexation behaviour of neptunium with humic acid. Radiochim Acta 89(8):505–510

    CAS  Google Scholar 

  40. Andres Y, MacCordick HJ, Hubert JC (1993) Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Appl Microbiol Biot 39(3):413–417

    Article  CAS  Google Scholar 

  41. Francis AJ, Gillow JB, Dodge CJ, Dunn M, Mantione K, Strietelmeier BA, Pansoy-Hjelvik ΜE, Papenguth HW (1998) Role of bacteria as biocolloids in the transport of actinides from a deep underground radioactive waste repository. Radiochim Acta 82:347–354

    Article  CAS  Google Scholar 

  42. Krawczyk-Bärsch E, Lünsdorf H, Pedersen K, Arnold T, Bok F, Steudtner R, Lehtinen A, Brendler V (2012) Immobilization of uranium in biofilm microorganisms exposed to groundwater seeps over granitic rock tunnel walls in Olkiluoto. Finland Geochim Cosmochim Acta 96:94–104

    Article  Google Scholar 

  43. Dedushenko SK, Perfiliev YuD, Kulikov LA (2013) Mössbauer spectroscopy and quality control in ferrate technology. Hyperfine Interact 218(1–3):59–65

    Article  CAS  Google Scholar 

  44. Lux H (1981) In: Handbuch der Präparativen Anorganischen Chemie, Vol. 3. Brauer G, Ed. Ferdinand Enke Verlag, Stuttgart, 1653

  45. http://www.ritverc.com/

  46. Dedushenko SK, Perfiliev YuD, Goldfeld MG, Tsapin AI (2001) Mössbauer study of hexavalent iron compounds. Hyperfine Interact 136(3):373–377

    Article  Google Scholar 

  47. US Environmental Protection Agency (USEPA) (2002) Chapter 7. Dilution water, in: methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (EPA-821-R-02-012). USEPA, Washington, DC, pp 31–36

    Google Scholar 

  48. Goldberg S, Criscenti LJ, Turner DR, Davis JA, Cantrell KJ (2007) Adsorption-desorption processes in subsurface reactive transport modeling. Vadose Zone J 6:407–435

    Article  CAS  Google Scholar 

  49. Wang P, Anderko A (2001) Thermodynamic modeling of the adsorption of radionuclides on selected minerals. I: Cations. Ind Eng Chem Res 40:4428–4443

    Article  CAS  Google Scholar 

  50. Geckeis H, Lützenkirchen J, Polly R, Rabung Th, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113(2):1016–1062

    Article  CAS  Google Scholar 

  51. Torstenfelt B, Andersson K, Allard B (1982) Sorption of strontium and cesium on rocks and minerals. Chem Geol 36:123–137

    Article  CAS  Google Scholar 

  52. Wanner H, Albinsson y, Wieland E (1996) A thermodynamic surface model for caesium sorption on bentonite. Fresenius J Anal Chem 354:763–769

    CAS  Google Scholar 

  53. Bostick BC, Vairavamurthy MA, Karthikeyan KG, Chorover J (2002) Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environ Sci Technol 36:2670–2676

    Article  CAS  Google Scholar 

  54. Rabung Th, Geckeis H, Kim J-I, Beck HP (1998) Sorption of Eu(III) on a natural hematite: application of a surface complexation model. J Coll Interface Sci 208:153–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reported study was supported by Russian Science Foundation (project 14-13-01279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir G. Petrov or Yury D. Perfiliev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.G., Perfiliev, Y.D., Dedushenko, S.K. et al. Radionuclide removal from aqueous solutions using potassium ferrate(VI). J Radioanal Nucl Chem 310, 347–352 (2016). https://doi.org/10.1007/s10967-016-4867-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4867-5

Keywords

Navigation