Skip to main content
Log in

99mTc labeled plumbagin: estrogen receptor dependent examination against breast cancer cells and comparison with PLGA encapsulated form

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Plant origin products having anticancer properties come into prominence due to widespread of cancer. Plumbagin has various biological activities like anticancer activity. Estrogen receptor (ER) specificity of plumbagin (PL) and radiolabeled PL investigated by in vitro studies on ER+ and ER− adenocarcinoma cells. Additionally, PLGA encapsulation was carried out to reduce toxicity of plumbagin and encapsulation effect was investigated. Plumbagin radiolabeled with 100 % in yields and had ER specificity. Furthermore, PLGA encapsulation effected positively on properties of plumbagin; reduced toxicity, increased stability and ER specificity. A promising agent for the diagnosis of ER+ breast cancer is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Article  Google Scholar 

  3. Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH (2012) Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev 32:1131–1158

    Article  CAS  Google Scholar 

  4. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN (2009) Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res 7:4–13

    Article  CAS  Google Scholar 

  5. Van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  Google Scholar 

  6. Ozkan BM, Muftuler FZB, Kilcar AY, Medine EI, Unak P (2013) Isolation of hydroxytyrosol from olive leaves extract, radioiodination and investigation of bioaffinity using in vivo/in vitro methods. Radiochim Acta 101:585–593

    CAS  Google Scholar 

  7. Efferth T, Li PCH, Konkimalla VSB, Kaina B (2007) From traditional Chinese medicine to rational cancer therapy. Trends Mol Med 13:353–361

    Article  CAS  Google Scholar 

  8. Gullett NP, Ruhul Amin ARM, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, Aggarwal BB, Surh YJ, Kucuk O (2010) Cancer prevention with natural compounds. Semin Oncol 37:258–281

    Article  CAS  Google Scholar 

  9. Ghavami G, Sardari S, Shokrgozar MA (2010) Anticancerous potentials of Achillea species against selected cell lines. J Med Plants Res 4:2411–2417

    Google Scholar 

  10. Selvakumar V, Anbudurai PR, Balakumar T (2001) In vitro propagation of the medicinal plant Plumbago zeylanica L. through nodal explants. In Vitro Cell Dev Biol 37:280–284

    Article  CAS  Google Scholar 

  11. Patil CD, Patil SV, Salunke BK, Salunkhe RB (2010) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol Res 108:1253–1263

    Article  Google Scholar 

  12. Pant M, Lal A, Rana S, Rani A (2012) Plumbago Zeylanica L.: a Mini Review. Int J Pharm Appl 3:399–405

    Google Scholar 

  13. Singh UV, Bisht KS, Rao S, Devi PU, Udupa N (1996) Plumbagin-loaded PLGA microspheres with reduced toxicity and enhanced antitumour efficacy in mice. Pharm Pharmacol Commun 2:407–440

    CAS  Google Scholar 

  14. Pandey U, Bapat K, Samuel G, Sarma HD, Venkatesh M (2007) Potential of radioiodinated anti cancer compounds of natural origin for cancer therapy. J Radioanal Nucl Chem 273:725–728

    Article  CAS  Google Scholar 

  15. Mossa JS, El-Feraly FS, Muhammad I (2004) Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phyther Res 18:934–937

    Article  CAS  Google Scholar 

  16. Ding Y, Chen Z-J, Liu S, Che D, Vetter M, Chang CH (2005) Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 57:111–116

    Article  CAS  Google Scholar 

  17. Aziz MH, Dreckschmidt NE, Verma AK (2008) Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res 68:9024–9032

    Article  CAS  Google Scholar 

  18. Xu T-P, Shen H, Liu L-X, Shu Y-Q (2013) Plumbagin from Plumbago Zeylanica L induces apoptosis in human non-small cell lung cancer cell lines through NF-κB inactivation. Asian Pac J Cancer Prev 14:2325–2331

    Article  Google Scholar 

  19. Sugie S, Okamoto K, Rahman KMW, Tanaka T, Kawai K, Yamahara J, Mori H (1998) Inhibitory effects of plumbagin and juglone on azoxymethane-induced intestinal carcinogenesis in rats. Cancer Lett 127:177–183

    Article  CAS  Google Scholar 

  20. Kuo P-L, Hsu Y-L, Cho C-Y (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221

    Article  CAS  Google Scholar 

  21. Hsu Y-L, Cho C-Y, Kuo P-L, Huang YT, Lin CC (2006) Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther 318:484–494

    Article  CAS  Google Scholar 

  22. Hazra B, Sarkar R, Bhattacharyya S, Ghosh PK, Chel G, Dinda B (2002) Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma in vivo and Leishmania donovani promastigotes in vitro. Phytother Res 16:133–137

    Article  CAS  Google Scholar 

  23. Xu K-H, Lu D-P (2010) Plumbagin induces ROS-mediated apoptosis in human promyelocytic leukemia cells in vivo. Leuk Res 34:658–665

    Article  CAS  Google Scholar 

  24. Powolny AA, Singh SV (2008) Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharm Res 25:2171–2180

    Article  CAS  Google Scholar 

  25. Ahmad A, Banerjee S, Wang Z, Kong D, Sarkar FH (2008) Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-κB and Bcl-2. J Cell Biochem 105:1461–1471

    Article  CAS  Google Scholar 

  26. Thasni KA, Rakesh S, Rojini G, Ratheeshkumar T, Srinivas G, Priya S (2008) Estrogen-dependent cell signaling and apoptosis in BRCA1-blocked BG1 ovarian cancer cells in response to plumbagin and other chemotherapeutic agents. Ann Oncol 19:696–705

    Article  CAS  Google Scholar 

  27. Wang CCC, Chiang Y-M, Sung S-C, Hsue Y-L, Chang JK, Kuo PL (2008) Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375. S2 cells. Cancer Lett 259:82–98

    Article  CAS  Google Scholar 

  28. Sinha S, Pal K, Elkhanany A, Dutta S, Cao Y, Mondal G, Iyer S, Somasundaram V, Couch FJ, Shridhar V, Bhattacharya R, Mukhopadhyay D, Srinivas P (2013) Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int J Cancer 132:1201–1212

    Article  CAS  Google Scholar 

  29. Kawiak A, Piosik J, Stasilojc G, Gwizdek-Wisniewska A, Marczak L, Stobiecki M, Bigda J, Lojkowska E (2007) Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicol Appl Pharmacol 223:267–276

    Article  CAS  Google Scholar 

  30. Sand JM, Bin Hafeez B, Jamal MS, Witkowsky O, Siebers EM, Fischer J, Verma AK (2012) Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), isolated from Plumbago zeylanica, inhibits ultraviolet radiation-induced development of squamous cell carcinomas. Carcinogenesis 33:184–190

    Article  CAS  Google Scholar 

  31. Parimala R, Sachdanandam P (1993) Effect of Plumbagin on some glucose metabolising enzymes studied in rats in experimental hepatoma. Mol Cell Biochem 125:59–63

    Article  CAS  Google Scholar 

  32. Azad Chowdhury AK, Sushanta KC, Azad Khan AK (1982) Antifertility activity of Plumbago zeylanica Linn. root. Indian J Med Res 76:99–101

    Google Scholar 

  33. Brannon-Peppas L (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 116:1–9

    Article  CAS  Google Scholar 

  34. Peltonen L, Koistinen P, Karjalainen M, Hakkinen A, Hirvonen J (2002) The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(l) lactide. AAPS PharmSciTech 3(E32):1–7

    Google Scholar 

  35. Muhammad HM, Saour KY, Naqishbandi AM (2009) Quantitative and qualitative analysis of plumbagin in the leaf and root of Plumbago europaea growing naturally in Kurdistan by HPLC introduction. Iraqi J Pharm Sci 18:54–59

    Google Scholar 

  36. Zhen W, Han H, Anguiano M, Lemere CA, Cho CG, Lansbury PT (1999) Synthesis and amyloid binding properties of rhenium complexes: preliminary progress toward a reagent for SPECT imaging of Alzheimer’s disease brain. J Med Chem 42:2805–2815

    Article  CAS  Google Scholar 

  37. Mele’ndez-Alafort LM, Riondato M, Nadali A, Mele L, Banzato A, Camporese D, Boccaccio P, Uzunov N, Rosato A, Mazzi U (2006) Bioavailability of 99mTc-Ha-paclitaxel complex [99mTc-ONCOFID-P] in mice using four different administration routes. J Label Compd Radiopharm 49:939–950

    Article  Google Scholar 

  38. Mirahmadi N, Babaei MH, Vali AM, Daha FJ, Kobarfard F, Dadashzadeh S (2008) 99mTc-HMPAO-labeled liposomes: an investigation into the effects of some formulation factors on labeling efficiency and in vitro stability. Nucl Med Biol 35:387–392

    Article  CAS  Google Scholar 

  39. Schwochau K (2000) Technetium chemistry and radiopharmaceutical applications. Wiley, Winheim

    Google Scholar 

  40. Nguyen AT, Malonne H, Duez P, Vanhaelen-Fastre R, Vanhaelen M, Fontaine J (2004) Cytotoxic constituents from Plumbago zeylanica. Fitoterapia 75:500–504

    Article  CAS  Google Scholar 

  41. Bapat K, Chintalwar GJ, Pandey U, Thakur VS, Sarma HD, Samuel G, Pillai MRA, Chattopadhyay S, Meera Venkatesh (2005) Preparation and in vitro evaluation of radioiodinated bakuchiol as an anti tumor agent. Appl Radiat Isot 62:389–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Current work is supported by Ege University Research Fund (contract no 2014 NBE 004). The authors thank to Büşra Karatay and Görkem Yıldız for the technical assistance during the assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayfer Yurt Kilcar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurt Kilcar, A., Tekin, V., Biber Muftuler, F.Z. et al. 99mTc labeled plumbagin: estrogen receptor dependent examination against breast cancer cells and comparison with PLGA encapsulated form. J Radioanal Nucl Chem 308, 13–22 (2016). https://doi.org/10.1007/s10967-015-4284-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4284-1

Keywords

Navigation