Skip to main content
Log in

Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effect of NaCl concentration (10.0–1,000 mM) on 226Ra adsorption was investigated in the presence of montmorillonite and kaolinite. A positive correlation was observed between the dissolved 226Ra and NaCl concentrations in the presence of these adsorbents. Distribution coefficients decreased from the order of 104 to 100 (mL g−1) with an increase in NaCl concentration. Although the coefficients were higher for montmorillonite than kaolinite at lower NaCl concentrations, the trend was reversed at higher NaCl concentrations (≥500 mM) owing to the sharper reduction of the coefficient for montmorillonite with the increase in NaCl concentration. The rapid reduction was ascribed to higher negative charge density of montmorillonite, which leads the Ra2+ adsorption mechanism to approach charge-compensating ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gascoyne M (1989) High levels of uranium and radium in groundwaters at Canada’s Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada. Appl Geochem 4:577–591

    Article  CAS  Google Scholar 

  2. Minster T, Ilani S, Kronfeld J, Even O, Godfrey-Smith DI (2004) Radium contamination in the Nizzana-1 water well, Negev Desert, Israel. J Environ Radioact 71:261–273

    Article  CAS  Google Scholar 

  3. Vengosh A, Hirschfeld D, Vinson D, Dwyer G, Raanan H, Rimawi O, Al-Zoubi A, Akkawi E, Marie A, Haquin G, Zaarur S, Canor J (2009) High naturally occurring radioactivity in fossil groundwater from the Middle East. Environ Sci Technol 43:1769–1775

    Article  CAS  Google Scholar 

  4. Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 260:159–171

    Article  CAS  Google Scholar 

  5. Ames LL, McGarrah JE, Walker BA (1983) Sorption of trace constituents from aqueous solutions onto secondary minerals. II. Radium. Clay Clay Miner 31:335–342

    Article  CAS  Google Scholar 

  6. Chalupnik S, Michalik B, Wysocka M, Skubacz K, Mielnikow A (2001) Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines. J Environ Radioact 54:85–98

    Article  CAS  Google Scholar 

  7. Krishnaswami S, Graustein WC, Turekian KK (1982) Radium, thorium and radioactive lead isotopes in groundwaters: application to the in situ determination of adsorption-desorption rate constants and retardation factors. Water Resour Res 18:1633–1675

    Article  Google Scholar 

  8. Langmuir D, Riese AC (1985) The thermodynamic properties of radium. Geochim Cosmochim Acta 49:1593–1601

    Article  CAS  Google Scholar 

  9. Herczeg AL, Simpson HJ, Anderson RF, Trier RM, Mathieu GG, Deck BL (1988) Uranium and radium mobility in groundwaters and brines within the Delaware Basin, southeastern New Mexico, U.S.A. Chem Geol (Isot Geosci Sect) 72:181–196

    CAS  Google Scholar 

  10. Krishnaswami S, Bhushan R, Baskaran M (1991) Radium isotopes and 222Rn in shallow brines, Kharaghoda (India). Chem Geol (Isot Geosci Sect) 87:125–136

    Article  CAS  Google Scholar 

  11. Hidaka H, Horie K, Gauthier-Lafaye F (2007) Transport and selective uptake of radium into natural clay minerals. Earth Planet Sci Lett 264:167–176

    Article  CAS  Google Scholar 

  12. Kraemer TF, Reid DF (1984) The occurrence and behavior of radium in saline formation water of the U.S. gulf coast region. Chem Geol (Isot Geosc) 2:153–174

    CAS  Google Scholar 

  13. Moise T, Starinsky A, Katz A, Kolodny Y (2000) Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley: enrichment, retardation, and mixing. Geochim Cosmochim Acta 64:2371–2388

    Article  CAS  Google Scholar 

  14. Sturchio NC, Banner JL, Binz CM, Heraty LB, Musgrove M (2001) Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Appl Geochem 16:109–122

    Article  CAS  Google Scholar 

  15. Tomita J, Satake H, Sasaki K, Sakaguchi A, Inoue M, Hamajima Y, Yamamoto M (2009) Radium isotope in Na-Cl type saline waters from deep wells around coastal area in Ishikawa Prefecture, Japan. J Hot Spring Sci 58:241–255 (in Japanese with English abstract)

    Google Scholar 

  16. Tomita J, Satake H, Fukuyama T, Sasaki K, Sakaguchi A, Yamamoto M (2010) Radium geochemistry in Na-Cl type groundwater in Niigata Prefecture, Japan. J Environ Radioact 101:201–210

    Article  CAS  Google Scholar 

  17. Dickson BL (1985) Radium isotopes in saline seepages, south-western Yilgarn, Western Australia. Geochim Cosmochim Acta 49:361–368

    Article  CAS  Google Scholar 

  18. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Englewood Cliffs

    Google Scholar 

  19. Beneš P, Borovec Z, Strejc P (1985) Interaction of radium with freshwater sediments and their mineral components. II. Kaolinite and montmorillonite. J Radioanal Nucl Chem 89:339–351

    Article  Google Scholar 

  20. Beneš P, Borovec Z, Strejc P (1986) Interaction of radium with freshwater sediments and their mineral components. III. Muscovite and feldsper. J Radioanal Nucl Chem 98:91–103

    Article  Google Scholar 

  21. Wang RS, Chau ASY, Flu F, Cheng H, Nar P, Chen XM, Wu QY (1993) Studies on the adsorption and migration of radium in natural minerals. J Radioanal Nucl Chem 171:347–364

    Article  CAS  Google Scholar 

  22. Komarneni S, Kozai N, Paulus WJ (2001) Superselective clay for radium uptake. Nature 410:771

    Article  CAS  Google Scholar 

  23. Tachi Y, Shibutani T, Sato H, Yui M (2001) Experimental and modeling studies on sorption and diffusion of radium in bentonite. J Contam Hydrol 47:171–186

    Article  CAS  Google Scholar 

  24. Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Berlin

    Book  Google Scholar 

  25. Shirozu H (1988) Introduction to clay mineralogy -fundamentals for clay science-. Asakura, Tokyo

    Google Scholar 

  26. Beneš P, Strejc P, Lukavec Z (1984) Interaction of radium with freshwater sediments and their mineral components. I J Radioanal Nucl Chem 82:275–285

    Article  Google Scholar 

  27. Webster IT, Hancock GJ, Murray AS (1995) Modelling the effect of salinity on radium desorption from sediments. Geochim Cosmochim Acta 59:2469–2476

    Article  CAS  Google Scholar 

  28. Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  29. Lagaly G (2006) In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank M. Fuchizaki, Kanazawa University, for the XRD spectral measurements. T. Murakami, Kanazawa University, is acknowledged for valuable comments in the interpretation of the experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Tamamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamamura, S., Takada, T., Tomita, J. et al. Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite. J Radioanal Nucl Chem 299, 569–575 (2014). https://doi.org/10.1007/s10967-013-2740-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2740-3

Keywords

Navigation