Skip to main content
Log in

Thermosensitive biotinylated hydroxypropyl cellulose-based polymer micelles as a nano-carrier for cancer-targeted drug delivery

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, we report the synthesis of a novel amphiphilic hydroxypropyl cellulose-based polymer (HPC-PEG-Chol) that contained poly (ethylene glycol) and cholesterol-containing moieties with specific degrees of substitution. The resulting polymer was subsequently converted to a biotin conjugate (HPC-PEG-Chol-biotin), to develop a new potential cancer-targeted drug delivery system. The biotin conjugate was used to prepare micelles via the dialysis method. The polymeric micelles in aqueous solution presented a lower critical solution temperature (LCST) of 39.8 oC. The critical micelle concentration (CMC) values of the polymeric micelles at 25 and 45 °C were evaluated to be about 0.32 and 0. 25 g/L, respectively. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses of the micelles revealed the spherical shapes of the micelles, with 84 nm mean diameters that increased with the increase of the temperature above LCST. The hydrophobic anticancer drug paclitaxel (PTX) was loaded in the micelles and the in vitro release behaviors of PTX were investigated at different temperatures. The release profile of PTX from the polymeric micelles revealed a thermosensitivity, since its release rate was higher at 41 °C than at 37 °C. Fluorescent microscopy analyses confirm that the PTX-loaded HPC-PEG-Chol-biotin is superior in cellular uptake, with very strong adsorption to both HeLa and MDA-MB-231 cancer cell lines. MTT assay in normal cells indicated that HPC-PEG-Chol-biotin micelles have great potential to be safely used in tumor-targeting chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jones MC, Leroux JC (1999) Polymeric micelles: A new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  CAS  Google Scholar 

  2. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Article  CAS  Google Scholar 

  3. Hu F-Q, Meng P, Dai Y-Q, Du Y-Z, You J, Wei X-H, Yuan H (2008) PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy. Eur J Pharm Biopharm 70(3):749–757

    Article  CAS  Google Scholar 

  4. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    Article  CAS  Google Scholar 

  5. Wang F, Zhang D, Duana C, Jia L, Feng F, Liu Y, Wang Y, Hao L, Zhang Q (2011) Preparation and characterizations of a novel deoxycholic acid–O-carboxymethylated chitosan–folic acid conjugates and self-aggregates. Carbohydr Polym 84:1192–1200

    Article  CAS  Google Scholar 

  6. Scomparin A, Salmaso S, Bersani S, Satchi-Fainaro R, Caliceti P (2011) Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci 42:547–558

    Article  CAS  Google Scholar 

  7. Li Y, Liu R, Liu W, Kang H, Wu M, Huang Y (2008) Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose-g-P(PEGMA) amphiphilic copolymers. J Polym Sci A Polym Chem 46:6907–6915

    Article  CAS  Google Scholar 

  8. Nath N, Chilkoti A (2002) Creating ‘smart’ surfaces using stimuli responsive polymers. Adv Mater 14:1243–1247

    Article  CAS  Google Scholar 

  9. Li W, Tu W, Cao D (2009) Synthesis of thermoresponsive polymeric micelles of PNIPAAm-b-OMMA as a drug carrier for loading and controlled release of prednisolone. J Appl Polym Sci 111:701–708

    CAS  Google Scholar 

  10. Porsch C, Hansson S, Nordgren N, MalmstrÖm E (2011) thermoresponsive cellulose-based architectures: tailoring LCST using poly (ethylene glycol) methacrylates. Polym Chem 2:1114–1123

    Article  CAS  Google Scholar 

  11. Bagheri M, Shateri S (2012) Thermosensitive nanosized micelles from cholesteryl-modified hydroxypropyl cellulose as a novel carrier of hydrophobic drugs. Iran Polym J 21:365–373

    Article  CAS  Google Scholar 

  12. Klug ED (1971) Some properties of water-soluble hydroxyalkyl celluloses and their derivatives. J. Polym. Sci., Part C: Polym. Lett. 9:491.

  13. Zhang Z, Chen L, Zhao C, Bai Y, Deng M, Shan H, Zhuang X, Chen X, Jing X (2011) Thermo- and pH-responsive HPC-g-AA/ AA hydrogels for controlled drug delivery applications. Polymer 52:676–682

    Article  CAS  Google Scholar 

  14. Zabaleta V, Campanero MA, Irache JM (2007) An HPLC with evaporative light scattering detection method for the quantification of PEGs and Gantrez in PEGylated nanoparticles. J Pharm Biomed Anal 44:1072–1078

    Article  CAS  Google Scholar 

  15. Jiang X, Dai H, Leong KW, Goh SH, Mao HQ, Yang YY (2006) Chitosan-g-PEG/DNAcomplexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J Gene Med 8:477–487

    Article  CAS  Google Scholar 

  16. Gao JQ, Eto Y, Yoshioka Y, Sekiguchi F, Kurachi S, Morishige T, Yao XL, Watanabe H, Asavatanabodee R, Sakurai F, Mizuguchi H, Okada Y, Mukai Y, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S (2007) Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J Control Release 122:102–110

    Article  CAS  Google Scholar 

  17. Vuković L, Khatib FA, Drake SP, Madriaga A, Brandenburg KS, Král P, Onyuksel H (2011) Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc 133(34):13481–13488

    Article  Google Scholar 

  18. Pourmoazzen Z, Bagheri M, Entezami AA, Koshki KN (2013) pH-responsive micelles composed of poly (ethylene glycol) and cholesterol-modified poly (monomethyl itaconate) as a nanocarrier for controlled and targeted release of piroxicam. J Polym Res 20:295

    Article  Google Scholar 

  19. Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nano-medicines: principles and practice. Br J Cancer 99:392–397

    Article  CAS  Google Scholar 

  20. Na K, Lee TB, Park K-H, Shin E-K, Lee Y-B, Choi H-K (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173

    Article  CAS  Google Scholar 

  21. Bian Q, Xiao Y, Lang M (2012) Thermoresponsive biotinylated star amphiphilic block copolymer: Synthesis, self-assembly, and specific target recognition. Polymer 53:1684–1693

    Article  CAS  Google Scholar 

  22. Blagosklonny MV, Fojo T (1999) Molecular effects of paclitaxel: Myths and reality. Int J Cancer 83:151–156

    Article  CAS  Google Scholar 

  23. Jang M-K, Jeong Y-I, Nah J-W (2010) Characterization and preparation of core–shell type nanoparticle for encapsulation of anticancer drug. Colloids Surf B: Biointerfaces 81:530–536

    Article  CAS  Google Scholar 

  24. Douziech-Eyrolles L, Marchais H, Hervé K, Munnier E, Soucé M, Linassier C, Dubois P, Chourpa I (2007) Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2(4):541–550

    Google Scholar 

  25. Bagheri M, Shateri S (2012) Synthesis and characterization of novel liquid crystalline cholesteryl-modified hydroxypropyl cellulose derivatives. J Polym Res 19:9842–9854

    Article  Google Scholar 

  26. Kosho H, Hiramatsu S, Nishi T (1999) Thermotropic cholesteric liquid crystals in ester derivatives of hydroxypropylcellulose. High Perform Polym 11:41–48

    Article  CAS  Google Scholar 

  27. Moore GS, Stupp SI (1990) Room-temperature polyesterification. Macromolecules 23:65–70

    Article  CAS  Google Scholar 

  28. Malkoch M, Malmstro E, Hult A (2002) Rapid and efficient synthesis of aliphatic ester dendrons and dendrimers. Macromolecules 35:8307–8314

    Article  CAS  Google Scholar 

  29. Niknejad H, Deihim T, Ahmadiani A, Jorjani M, Peirovi H (2012) Permanent expression of midbrain dopaminergic neurons traits in differentiated amniotic epithelial cells. Neurosci Lett 506:22–27

    Article  CAS  Google Scholar 

  30. Hu F-Q, Ren G-F, Yuan H, Y-Zh D, Zeng S (2006) Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B: Biointerfaces 50:97–103

    Article  CAS  Google Scholar 

  31. Ngawhirunpata T, Wonglertniranta N, Opanasopit P, Ruktanonchai U, Yoksan R, Wasanasuk K, Chirachanchai S (2009) Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin. Colloids Surf B: Biointerfaces 74:253–259

    Article  Google Scholar 

  32. Jeong JH, Kim SH, Kim SW, PARK TG (2005) In vivo tumor targeting of ODN-PEG-folic acid/PEI polyelectrolyte complex micelles. J. Biomater. Sci. Polymer Edn 16:1409–1419

    CAS  Google Scholar 

  33. Siegwart DJ, Oh JK, Gao H, Bencherif SA, Perineau F, Bohaty AK, Hollinger JO, Matyjaszewski K (2008) Biotin-, pyrene-, and GRGDS-functionalized polymers and nanogels via ATRP and end group modification. Macromol Chem Phys 209:2179–2193

    Article  CAS  Google Scholar 

  34. Wu Y, Zheng Y, Yang W, Wang Ch HJ, Sh F (2005) Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer. Carbohydr Polym 59:165–171

    Article  CAS  Google Scholar 

  35. Chilkoti A, Dreher MR, Meyer DE, Raucher D (2002) Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 54:613–630

    Article  CAS  Google Scholar 

  36. Yang M, Ding Y, Zhang L, Qian X, Jiang X, Liu B (2007) a. Novel thermosensitive polymeric micelles for docetaxel delivery. J Biomed Mater Res 81:847–858

    Article  Google Scholar 

  37. Nabid MR, Tabatabaei Rezaei SJ, Sedghi R, Niknejad H, Entezami AA, Oskooie HA, Heravin MM (2011) Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer 52:2799–2809

    Article  CAS  Google Scholar 

  38. Liu H, Farrell S, Uhrich KJ (2000) Drug Release Characteristics of Unimolecular Polymeric Micelles Controlled Release 68:167–174

    Article  CAS  Google Scholar 

  39. Y-s W, Jiang Q, R-s L, L-l L, Q-q Z, Y-m W, Zhao J (2008) Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel. Nanotechnology 19:145101–145108

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Iran National Science Foundation for financially supporting this research. We are grateful to Azarbaijan Shahid Madani University Research Council for partial support of this study. The authors' warm thanks are also extended to Ms. Veghar Barri for her assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoumeh Bagheri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Shateri, S., Niknejad, H. et al. Thermosensitive biotinylated hydroxypropyl cellulose-based polymer micelles as a nano-carrier for cancer-targeted drug delivery. J Polym Res 21, 567 (2014). https://doi.org/10.1007/s10965-014-0567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0567-4

Keywords

Navigation