Skip to main content
Log in

Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Superabsorbent hydrogel-silver nanocomposite based on poly(vinyl alcohol) (PVA) and sodium alginate (Na-Alg) was prepared using free radical polymerization in the presence of acrylamide (AAm) monomer. The reactions were conducted under normal atmospheric conditions, using ammonium persulfate (APS) as an initiator and methylene bisacrylamide (MBA) as a crosslinking agent. The effect of reaction parameters such as MBA, AAm, and APS concentration as well as Na-Alg/PVA weight ratio on the water absorbency and the gel content of the hydrogels were studied. Evidence of grafting was obtained by comparing the FT-IR spectra and the TGA of the initial substrates with that of the superabsorbent hydrogel. Furthermore, Ag nanoparticles were synthesized in a green synthesis process. Highly stable silver nanoparticles were obtained with the hydrogel networks as nanoreactor via in situ reduction of silver nitrate by using sodium borohydride as a reducing agent. The hydrogel silver nanocomposite was fully characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The effect of cross-link density, and Na-Alg/PVA weight ratio on the loading and the size of nanoparticles were studied. The antibacterial activity of the silver nanocomposite hydrogel was investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig 8
Fig 9
Fig. 10
Fig. 11
Fig 12
Fig 13
Fig 14
Fig 15

Similar content being viewed by others

References

  1. Deligkaris K, Shiferaw Tadele T, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sensors Actuators B Chem 147:765–774

    Article  CAS  Google Scholar 

  2. Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interf Sci. doi:10.1016/j.cis.2011.06.005

    Google Scholar 

  3. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  4. Endo T, Ikeda R, Yanagida Y, Hatsuzawa T (2008) Stimuli-responsive hydrogel–silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta 611:205–211

    Article  CAS  Google Scholar 

  5. Paz Zanini V, López de Mishima B, Solís V (2011) An amperometric biosensor based on lactate oxidase immobilized in laponite–chitosan hydrogel on a glassy carbon electrode. Application to the analysis of L-lactate in food samples. Sensors Actuators B Chem 155:75–80

    Article  Google Scholar 

  6. Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HGP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors. doi:10.3390/s8010561

    Google Scholar 

  7. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci. doi:10.1016/j.progpolymsci.2008.07.005

    Google Scholar 

  8. Lin Ch C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  Google Scholar 

  9. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. doi:10.1016/j.progpolymsci.2008.01.002

    Google Scholar 

  10. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release. doi:10.1016/j.jconrel.2007.01.004

    Google Scholar 

  11. Aurand ER, Lampe KJ, Bjugstad KB (2012) Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci Res. doi:10.1016/j.neures.2011.12.005

    Google Scholar 

  12. Tan R, She Z, Wang M, Fang Z, Liu Y, Feng Q (2012) Thermo-sensitive alginate-based injectable hydrogel for tissue engineering original research article. Carbohydr Polym 87:1515–1521

    Article  CAS  Google Scholar 

  13. Abd El-Mohdy HL (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res. doi:10.1007/s10965-013-0177-6

    Google Scholar 

  14. Wang T, Zhu X-K, Xue X-T, Wu D-Y (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83

    Article  CAS  Google Scholar 

  15. Sudheesh Kumar PT, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 80:761–767

    Article  Google Scholar 

  16. Compan V, Andrio A, Lopez-Alemany A, Riande E, Refojo MF (2002) Oxygen permeability of hydrogel contact lenses with organosilicon moieties. Biomaterials. doi:10.1016/S0142-9612(02)00012-1

    Google Scholar 

  17. El-Sherif H, El-Masry M, Kansoh A (2011) Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities. Macromol Res. doi:10.1007/s13233-011-1109-0

    Google Scholar 

  18. Lu Y, Spyra P, Mei Y, Ballauff M, Pich A (2007) Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol Chem Phys. doi:10.1002/macp.200600534

    Google Scholar 

  19. Sahiner N, Ozay H, Ozay O, Aktas N (2010) A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols. Appl Catal B Environ 101:137–143

    Article  CAS  Google Scholar 

  20. Mallicka K, Witcombb M, Scurrell M (2006) Silver nanoparticle catalyzed redox reaction: an electron relay effect. Mater Chem Phys 97:283–287

    Article  Google Scholar 

  21. Daniel MC, Astrue D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  22. Sahiner N, Ozay O, Inger E, Aktas N (2011) Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. J Power Sources 196:10105–10111

    Article  CAS  Google Scholar 

  23. Sahiner N, Butun S, Ozay O, Dibek B (2012) Utilization of smart hydrogel–metal composites as catalysis media. J Colloid Interface Sci. doi:10.1016/j.jcis.2011.08.080

    Google Scholar 

  24. Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  CAS  Google Scholar 

  25. Lee T, Liu J, Chen N-P, Andres RP, Janes DB, Reifenberger R (2000) Electronic properties of metallic nanoclusters on semiconductor surfaces: implications for nanoelectronic device applications. J Nanoparticle Res. doi:10.1023/A:1010053303142

    Google Scholar 

  26. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395. doi:10.1016/j.jcis.2007.06.068

    Article  CAS  Google Scholar 

  27. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  Google Scholar 

  28. Tyliszczak B, Pielichowski K (2013) Novel hydrogels containing nanosilver for biomedical applications - synthesis and characterization. J Polym Res. doi:10.1007/s10965-013-0191-8

    Google Scholar 

  29. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135

    CAS  Google Scholar 

  30. Naeem H, Farooqi ZH, Ali Shah L, Siddiq M (2012) Synthesis and characterization of p(NIPAM-AA-AAm) microgels for tuning of optical Properties of silver nanoparticles. J Polym Res. doi:10.1007/s10965-012-9950-1

    Google Scholar 

  31. Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta. doi:10.1016/j.cca.2010.08.016

    Google Scholar 

  32. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behavior and effects in the aquatic environment. Environ Int. doi:10.1016/j.envint.2010.10.012

    Google Scholar 

  33. Jubya KA, Dwivedia C, Kumara M, Kotab S, Misrab HS, Bajaja PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr Polym 89:906–913

    Article  Google Scholar 

  34. Pourjavadi A, Farhadpour B, Seidi F (2009) Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery. J Polym Res. doi:10.1007/s10965-009-9270-2

    Google Scholar 

  35. Rezanejade Bardajee G, Pourjavadi A, Soleyman R (2011) Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone. J Polym Res. doi:10.1007/s10965-010-9423-3

    Google Scholar 

  36. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305

    Article  CAS  Google Scholar 

  37. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications review article. Prog Polym Sci. doi:10.1016/j.progpolymsci.2011.06.003

    Google Scholar 

  38. Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39

    Article  CAS  Google Scholar 

  39. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326

    Article  CAS  Google Scholar 

  40. Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly(vinyl alcohol) based materials. Prog Polym Sci. doi:10.1016/S0079-6700(02)00149-1

    Google Scholar 

  41. Xiaozhi T, Sajid A (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16

    Article  Google Scholar 

  42. Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med. doi:10.1023/A:1024907615244

    Google Scholar 

  43. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-Clay nanocomposite hydrogels for wound dressing. Eur Polym J. doi:10.1016/j.eurpolymj.2006.11.030

    Google Scholar 

  44. Abd El-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res. doi:10.1007/s10965-008-9196-0

    Google Scholar 

  45. Pourjavadi A, Amini-Fazl MS, Hosseinzadeh H (2005) Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties. Macromol Res. doi:10.1007/BF03219014

    Google Scholar 

  46. Kumbar SG, Aminabhavi TM (2002) Preparation and characterization of interpenetrating network beads of poly(vinyl alcohol)-grafted-poly(acrylamide) with sodium alginate and their controlled release characteristics for cypermethrin pesticide. J Appl Polym Sci 84:552–560

    Article  CAS  Google Scholar 

  47. Zohuriaan-Mehr MJ, Pourjavadi A (2003) Superabsorbent hydrogels from starch-g-PAN: effect of some reaction variables on swelling behavior. J Polym Mater. doi:10.1007/s10570-012-9711-7

    Google Scholar 

  48. Thomas V, Namdeo M, Murali Mohan Y, Bajpai SK, Bajpai M (2007) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci A Pure 45:107–119

    Article  Google Scholar 

  49. Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv Mater. doi:10.1002/adma.200306516

    Google Scholar 

  50. Murali Mohan Y, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Mohana Raju K (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci. doi:10.1016/j.jcis.2009.10.008

    Google Scholar 

  51. Park S, Keshava Murthy PS, Park S, Murali Mohan Y, Koh W-G (2011) Preparation of silver nanoparticle-containing semi-interpenetrating network hydrogels composed of pluronic and poly(acrylamide) with antibacterial property. J Ind Eng Chem 17:293–297

    Article  CAS  Google Scholar 

  52. Xu GC, Shi JJ, Li DJ, Xing HL (2009) On interaction between nano-Ag and P(AMPS-co-MMA) copolymer synthesized by ultrasonic. J Polym Res. doi:10.1007/s10965-008-9229-8

    Google Scholar 

  53. Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun. doi:10.1002/1521-3927(20001001

    Google Scholar 

  54. Chen J, Zhao Y (2000) Relationship between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbents. J Appl Polym Sci 75:808–814

    Article  CAS  Google Scholar 

  55. Pourjavadi A, Ghasemzadeh H, Hossainzadeh H (2004) Preparation and swelling behaviour of a novel anti-salt superabsorbent hydrogel based on kappa-carrageenan and sodium alginate grafted with polyacrylamide. e-Polymers no.027

  56. Harish Prashanth KV, Tharanathan RN (2006) Crosslinked chitosan-preparation and characterization. Carbohydr Res 341:169–173

    Article  Google Scholar 

  57. Zohuriaan-Mehr MJ (2005) Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iran Polym J 14:235–265

    CAS  Google Scholar 

  58. Vázquez C, López D, Burillo G, Ogawa T (1996) Thermal crosslinking of poly(methyl methacrylate-co-N, N-dimethylaminopropylacrylamide). Polym Bull 36:325–329

    Article  Google Scholar 

  59. Kabiri K, Mirzadeh H, Zohuriaan-mehr MJ (2008) Undesirable effects of heating on hydrogels. J Appl Polym Sci 110:3420–3430

    Article  CAS  Google Scholar 

  60. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395

    Article  CAS  Google Scholar 

  61. Omidian H, Park K (2002) Experimental design for the synthesis of polyacrylamide superporous hydrogels. J Bioact Compat Polym 17:433–450

    Article  CAS  Google Scholar 

  62. Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102:3–12

    Article  CAS  Google Scholar 

  63. Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J. doi:10.1016/S0014-3057(02)00391-9

    Google Scholar 

  64. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polym. doi:10.1016/j.polymer.2006.10.045

    Google Scholar 

  65. Murthy PSK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318:217–224

    Article  CAS  Google Scholar 

  66. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley-VCH, New York

    Google Scholar 

  67. Hosseinzadeh H, Pourjavadi A, Zohuriaan-Mehr MJ (2004) Kappa-Carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. J Biomater Sci Polym Ed 15:1499–1511

    Article  CAS  Google Scholar 

  68. Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ghasemzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemzadeh, H., Ghanaat, F. Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21, 355 (2014). https://doi.org/10.1007/s10965-014-0355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0355-1

Keywords

Navigation