Skip to main content
Log in

Required polymer lengths per precipitated protein molecule in protein-polymer interaction

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Protein precipitation using non-charged and charged polymers is a common method for protein purification, gaining broader interest among manufacturers in downstream processing. While during polymer- surface interactions, the formation of loops, tails and trains has been known for quite a long time, details of polymer conformation and chain length, interacting with the protein during protein precipitation are not fully discovered. Our research presents a more profound understanding of polymer-protein interaction, combining fluorescence and infrared spectroscopic measurements of proteins and polymer standards with well defined chain length to confirm different models of protein-polymer interaction. Lysozyme, chymotrypsinogen A, myoglobin and a monoclonal antibody, all of different molecular weight, isoelectric point and charge distribution at the protein surface, were used for protein-polymer precipitation. The use of polymers of various charge density and chain length showed that the required polymer length per precipitated protein (Ldef) is up to 25-times larger than the diameter of the corresponding protein, depending on the surface charge distribution of the protein, and its isoelectric point, as well as the charge density of the polymer. Our results support proposed mechanisms of polymer wrapping and loop formation for optimal charge neutralization during complexation and imply interaction of several polymer chains per precipitated protein molecule. Electrophoretic light scattering showed a qualitative correlation of the zeta potential of analyzed polymers with their corresponding Ldef values. Comparing protein precipitation behavior of long and short polymer chains, the latter exhibited reduced precipitation efficiency, visible as elevated Ldef.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muzzarelli RAA, Weckx M, Fillipini O, Lough C (1989) Carbohydr Polym 11:293–296

    Article  CAS  Google Scholar 

  2. Bolto B, Gregory J (2007) Water Res 41:2301–2324

    Article  CAS  Google Scholar 

  3. Shahidi F, Synowiecki J (1991) J Agric Food Chem 39:1527–1532

    Article  CAS  Google Scholar 

  4. Sudharshan NR, Hoover DG, Knorr D (1992) Food Biotechnol 6:257–272

    Article  Google Scholar 

  5. Papineau AM, Hoover DG, Knorr D, Farkas DF (1991) Food Biotechnol 5:45–57

    Article  CAS  Google Scholar 

  6. Gross RA, Kalra B (2002) Science 297:803–807

    Article  CAS  Google Scholar 

  7. Allen TM, Cullis PR (2004) Science 303:1818–1822

    Article  CAS  Google Scholar 

  8. Gillies ER, Fréchet JM (2005) J Drug Discov Today 10:35–43

    Article  CAS  Google Scholar 

  9. Schmaljohann D (2006) Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  10. Kokufuta E (1992) Prog Polym Sci 17:647–697

    Article  CAS  Google Scholar 

  11. Dubin PL, Gao J, Mattison K (1994) Sep Purif Methods 23:1–16

    Article  CAS  Google Scholar 

  12. Ovenden C, Xiao H (2002) Colloids Surf A 197:225–234

    Article  CAS  Google Scholar 

  13. Svec F, Fréchet JM (1992) J Anal Chem 64:820–822

    Article  CAS  Google Scholar 

  14. Barrande M, Beurroies I, Denoyel R, Tatárová I, Gramblička M, Polakovič M, Joehnck M, Schulte M (2009) J Chromatogr A 1216:6906–6916

    Article  CAS  Google Scholar 

  15. Thömmes J, Etzel M (2007) Biotechnol Prog 23:42–45

    Article  Google Scholar 

  16. Low D, O’Leary R, Pujar NS (2007) J Chromatogr B 848:48–63

    Article  CAS  Google Scholar 

  17. Capito F, Skudas R, Stanislawski B, Kolmar H (2013) Colloid Polym Sci 1-11

  18. Cooper CL, Goulding A, Kayitmazer AB, Ulrich S, Stoll S, Turksen S, Dubin PL (2006) Biomacromolecules 7:1025–1035

    Article  CAS  Google Scholar 

  19. Cooper CL, Dubin PL, Kayitmazer AB, Turksen S (2005) Curr Opin Colloid Interface Sci 10:52–78

    Article  CAS  Google Scholar 

  20. Benmansour K, Medjahed K, Tennouga L, Mansri A (2003) Eur Polym J 39:1443–1449

    Article  CAS  Google Scholar 

  21. Mattison KW, Dubin PL, Brittain IJ (1998) J Phys Chem B 102:3830–3836

    Article  CAS  Google Scholar 

  22. Mattison KW, Brittain IJ, Dubin PL (1995) Biotechnol Prog 11:632–637

    Article  CAS  Google Scholar 

  23. Park J, Muhoberac BB, Dubin PL, Xia J (1992) Macromolecules 25:290–295

    Article  CAS  Google Scholar 

  24. Rawat K, Pathak J, Bohidar HB (2013) Phys Chem Chem Phys 15:12262–12273

    Article  CAS  Google Scholar 

  25. Hattori T, Bat-Alder S, Kato R, Bohidar HB, Dubin PL (2005) Anal Chem 342:229–236

    CAS  Google Scholar 

  26. Stoll S, Chodanowski P (2002) Macromolecules 35:9556–9562

    Article  CAS  Google Scholar 

  27. Xia J, Dubin PL, Kim Y, Muhoberac BB, Klimkowski VJ (1993) J Phys Chem 97:4528–4534

    Article  CAS  Google Scholar 

  28. Sato T, Mattison KW, Dubin PL, Kamachi M, Morishima Y (1998) Langmuir 14:5430–5437

    Article  CAS  Google Scholar 

  29. Yamaguchi K, Hachiya K, Moriyama Y, Takeda K (1996) J Coll Interf Sci 179:249–254

    Article  CAS  Google Scholar 

  30. Gummel J, Cousin F, Boué F (2008) Macromolecules 41:2898–2907

    Article  CAS  Google Scholar 

  31. Bohidar H, Dubin PL, Majhi PR, Tribet C, Jaeger W (2005) Biomacromolecules 6:1573–1585

    Article  CAS  Google Scholar 

  32. Borrega R, Tribet C, Audebert R (1999) Macromolecules 32:7798–7806

    Article  CAS  Google Scholar 

  33. Nguyen TT, Shklovskii BI (2001) J Chem Phys 114:5905–5916

    Article  CAS  Google Scholar 

  34. Ulrich S, Laguecir A, Stoll S (2005) Macromolecules 38:8939–8949

    Article  CAS  Google Scholar 

  35. Brynda M, Chodanowski P, Stoll S (2002) Colloid Polym Sci 280:789–797

    Article  CAS  Google Scholar 

  36. Schiessel H, Rudnick J, Bruinsma R, Gelbart WM (2000) Europhys Lett 51:237

    Article  CAS  Google Scholar 

  37. Akinchina A, Linse P (2002) Macromolecules 35:5183–5193

    Article  CAS  Google Scholar 

  38. Laguecir A, Stoll S, Kirton G, Dubin PL (2003) J Phys Chem B 107:8056–8065

    Article  CAS  Google Scholar 

  39. Chodanowski P, Stoll S (2001) J Chem Phys 115:4951–4960

    Article  CAS  Google Scholar 

  40. Chodanowski P, Stoll S (2001) Macromolecules 34:2320–2328

    Article  CAS  Google Scholar 

  41. Carlsson F, Malmsten M, Linse P (2003) J Am Chem Soc 125:3140–3149

    Article  CAS  Google Scholar 

  42. Skepö M, Linse P (2003) Macromolecules 36:508–519

    Article  Google Scholar 

  43. Jy S (1994) Glatz CE In Macromolecular Complexes in Chemistry and Biology; Dupin PL et al., Eds. Springer-Verlag, Berlin

    Google Scholar 

  44. Houska M, Brynda E, Bohata K (2004) J Coll Interf Sci 273:140–147

    Article  CAS  Google Scholar 

  45. Pawar N, Bohidar HB (2010) Phys Rev E 82:36107

    Article  Google Scholar 

  46. von Goeler F, Muthukumar M (1994) J Chem Phys 100:7796–7803

    Article  Google Scholar 

  47. Kong CY, Muthukumar M (1998) J Chem Phys 109:1522–1527

    Article  CAS  Google Scholar 

  48. Hattori T, Hallberg R, Dubin PL (2000) Langmuir 16:9738–9743

    Article  CAS  Google Scholar 

  49. Singh J, Dutta PK (2009) J Polym Res 16:231–238

    Article  CAS  Google Scholar 

  50. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) Nucleic Acids Res 37:387–392

    Article  Google Scholar 

  51. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  52. Peitsch MC (1995) Bio/Technology 13:658–660

    Article  CAS  Google Scholar 

  53. Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  54. Bas DC, Rogers DM, Jensen JH (2008) Proteins Struct Funct Bioinforma 73:765–783

    Article  CAS  Google Scholar 

  55. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) Nucleic Acids Res 35:522–525

    Article  Google Scholar 

  56. Li H, Robertson AD, Jensen JH (2005) Proteins Struct Funct Bioinforma 61:704–721

    Article  CAS  Google Scholar 

  57. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Nucleic Acids Res 32:665–667

    Article  Google Scholar 

  58. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci U S A 98:10037–10041

    Article  CAS  Google Scholar 

  59. Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, Goddard TD, Meng EC, Sali A, Ferrin TE (2012) J Struct Biol 179:269–278

    Article  CAS  Google Scholar 

  60. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  61. Roth CM, Lenhoff AM (1995) Langmuir 11:3500–3509

    Article  CAS  Google Scholar 

  62. Kisler JM, Stevens GW O, Connor AJ (2001) Mat Phy Mech 4:89–93

    CAS  Google Scholar 

  63. Papadopoulos S, Jürgens KD, Gros G (2000) Biophys J 79:2084–2094

    Article  CAS  Google Scholar 

  64. Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Nature 445:749–753

    Article  CAS  Google Scholar 

  65. McDonald P, Victa C, Carter‐Franklin JN, Fahrner R (2009) Biotechnol Bioeng 102:1141–1151

    Article  CAS  Google Scholar 

  66. Izumi T, Hirata M, Kokufuta E, Cha HJ, Frank CW (1994) J Macromol Sci Pure Appl Chem 31:31–37

    Google Scholar 

  67. Adamczyk Z, Zembala M, Warszýnski P, Jachimska B (2004) Langmuir 20:10517–10525

    Article  CAS  Google Scholar 

  68. Donath E, Walther D, Shilov VN, Knippel E, Budde A, Lowack K, Helm CA, Möhwald H (1997) Langmuir 13:5294–5305

    Article  CAS  Google Scholar 

  69. Tricot M (1984) Macromolecules 17:1698–1704

    Article  CAS  Google Scholar 

  70. Le Bret M (1982) J Chem Phys 76:6243–6255

    Article  Google Scholar 

  71. Messina R, Holm C, Kremer K (2003) Langmuir 19:4473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Merck KGaA for financial and material support. Thanks to Johann Bauer and Stephan von der Au, both Merck KGaA for helpful advice and supplying the Zetasizer Nano. Part of this work was performed within the frame of the project BIOPUR and IOLIPRO, funded by the German Federal Ministry of Education and Research (BMBF). We thank Charly Hohlschuh, Merck KGaA, for language assistance and proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Capito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capito, F., Kolmar, H., Stanislawski, B. et al. Required polymer lengths per precipitated protein molecule in protein-polymer interaction. J Polym Res 21, 346 (2014). https://doi.org/10.1007/s10965-013-0346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0346-7

Keywords

Navigation