Skip to main content
Log in

Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this article, a uniform discretization of stochastic integrals \(\int _{0}^{1} f^{\prime }_-(B_t)\mathrm d B_t\), where \(B\) denotes the fractional Brownian motion with Hurst parameter \(H \in (\frac{1}{2},1)\), is considered for a large class of convex functions \(f\). In Azmoodeh et al. (Stat Decis 27:129–143, 2010), for any convex function \(f\), the almost sure convergence of uniform discretization to such stochastic integral is proved. Here, we prove \(L^r\)-convergence of uniform discretization to stochastic integral. In addition, we obtain a rate of convergence. It turns out that the rate of convergence can be brought arbitrarily close to \(H - \frac{1}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We have \(C=1\) except when \(a\in [0,1]\). In this case, \(C=e^{\frac{1}{2}}\).

References

  1. Azmoodeh, E., Mishura, Y., Valkeila, E.: On hedging European options in geometric fractional Brownian motion market model. Stat. Decis. 27, 129–143 (2010)

    MathSciNet  Google Scholar 

  2. Biagini, F., Campanino, M., Fuschini, S.: Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index \(H > \frac{1}{2}\). Stochastics 80(5), 407–426 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coutin, L., Nualart, D., Tudor, C.: Tanaka formula for the fractional Brownian motion. Stoch. Process. Appl. 94(2), 301–315 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Friz, P., Victoir, N.: Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies of Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. Lifshits, M.A.: Gaussian Random Functions. Mathematics and its Applications, vol. 322. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

  7. Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, vol. 1929. Springer, Berlin (2008)

    Book  Google Scholar 

  8. Nualart, D., Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science, Yvendon (1993)

    MATH  Google Scholar 

  10. Wasilkowski, G.W., Woźniakowski, H.: On the complexity of stochastic integration. Math. Comput. 70(234), 685–698 (2001)

    Article  MATH  Google Scholar 

  11. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  Google Scholar 

  12. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. Part I. Probab. Theory Relat. Fields 111, 333–372 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Esko Valkeila for discussions and comments which improved the paper. The authors also thank anonymous referee for useful comments and remarks. Ehsan Azmoodeh thanks the Magnus Ehrnrooth foundation for financial support. Lauri Viitasaari thanks the Finnish Doctoral Programme in Stochastics and Statistics for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Viitasaari.

Appendix: Proofs of Lemmas 3.1 and 3.2

Appendix: Proofs of Lemmas 3.1 and 3.2

We begin with the following lemma which we use in the proof.

Lemma 4.3

Let \(H>\frac{1}{2}\) and fix \(0<s\le t\le 1\). Put

$$\begin{aligned} R(t,s) = \frac{1}{2}\left[ t^{2H}+s^{2H} - (t-s)^{2H}\right] . \end{aligned}$$

Then, there exists a constant \(C\), such that

$$\begin{aligned} 1-\frac{R(s,s)}{R(t,s)}\le C (t-s)^H s^{-H}. \end{aligned}$$

Proof

Note that since \(H>\frac{1}{2}\), we have \(R(s,s)\le R(t,s)\). Let now \(t>2s\). Then

$$\begin{aligned} \frac{(t-s)^H}{s^H} \ge \frac{(2s-s)^H}{s^H} = 1 \ge 1 -\frac{R(s,s)}{R(t,s)}. \end{aligned}$$

Hence, it is sufficient to consider the case \(s\le t \le 2s\). In this case, we have

$$\begin{aligned} \frac{R(t,s)}{R(s,s)}\le \frac{R(2s,s)}{R(s,s)}=2^{2H-1}. \end{aligned}$$

Hence, we only have to prove that

$$\begin{aligned} 1-\frac{R(s,s)}{R(t,s)}\le C \frac{(t-s)^H}{s^{H}}\frac{R(t,s)}{R(s,s)}. \end{aligned}$$

By putting \(k=\frac{t}{s}\), this is equivalent to

$$\begin{aligned} \left[ k^{2H}-1-(k-1)^{2H}\right] \le C(k-1)^H\left[ k^{2H} + 1 - (k-1)^{2H}\right] ^2. \end{aligned}$$

Now, we have \(k\in [1,2]\). Hence,

$$\begin{aligned}&\frac{\left[ k^{2H}-1-(k-1)^{2H}\right] }{(k-1)^H\left[ k^{2H} + 1 - (k-1)^{2H}\right] ^2}\\&\quad \le \frac{k^{2H}-1}{(k-1)^H}\le \frac{k^{2H}-1}{k^H-1}\\&\quad = k^H+1 \le 2^H+1. \end{aligned}$$

This completes the proof.\(\square \)

Proof of lemma 3.1

Let \(R(t,s)\) denotes the covariance function of fractional Brownian motion given by

$$\begin{aligned} R(t,s) = \frac{1}{2}\left[ t^{2H}+s^{2H} - (t-s)^{2H}\right] . \end{aligned}$$

We make use of decomposition

$$\begin{aligned} B_t = \frac{R(t,s)}{R(s,s)}B_s + \sigma Y, \end{aligned}$$

where \(Y\) is \(N(0,1)\) random variable independent of \(B_s\) and

$$\begin{aligned} \sigma ^2 = \frac{R(t,t)R(s,s)-R(t,s)^2}{R(s,s)}. \end{aligned}$$

Assume that

$$\begin{aligned} \frac{R(s,s)}{R(t,s)}(a-1) < a. \end{aligned}$$

Then, we obtain

$$\begin{aligned} \mathbb{P }(B_t > a > B_s)&= \int \limits _{-\infty }^a \mathbb{P }\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \frac{1}{\sqrt{2\pi }s^H}e^{-\frac{x^2}{2s^{2H}}}\mathrm d x\\&= \int \limits _{-\infty }^{\frac{R(s,s)}{R(t,s)}(a-1)} \mathbb{P }\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \frac{1}{\sqrt{2\pi }s^H}e^{-\frac{x^2}{2s^{2H}}}\mathrm d x\\&+ \int \limits _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \mathbb{P }\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \frac{1}{\sqrt{2\pi }s^H}e^{-\frac{x^2}{2s^{2H}}}\mathrm d x\\&:= I_1 + I_2. \end{aligned}$$

We begin with \(I_1\). By Lemma 4.2 we have

$$\begin{aligned} \mathbb{P }\left( Y\ge \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\right) \le \frac{1}{\sqrt{2\pi }A(x)}e^{-\frac{A(x)^2}{2}}, \end{aligned}$$

where \(A(x) = \frac{a-\frac{R(t,s)}{R(s,s)}x}{\sigma }\). Hence

$$\begin{aligned} I_1&\le \int \limits _{-\infty }^{\frac{R(s,s)}{R(t,s)}(a-1)} \frac{1}{\sqrt{2\pi }A(x)}e^{-\frac{A(x)^2}{2}}\frac{1}{\sqrt{2\pi }s^H}e^{-\frac{x^2}{2s^{2H}}}\mathrm d x\\&\le \frac{\sigma }{s^H}e^{-\frac{a^2}{2}}\int \limits _{-\infty }^{\frac{R(s,s)}{R(t,s)}(a-1)} \frac{1}{2\pi }e^{-\frac{A(x)^2}{2}-\frac{x^2}{2s^{2H}} + \frac{a^2}{2}}\mathrm d x\\&= \frac{R(s,s)}{R(t,s)}\frac{\sigma }{s^H}e^{-\frac{a^2}{2}}\int \limits _{1}^{\infty } \frac{1}{2\pi }e^{-\frac{y^2}{2\sigma ^2}-\frac{\left[ \frac{R(s,s)}{R(t,s)}(a-y)\right] ^2}{2s^{2H}} + \frac{a^2}{2}}\mathrm d y \end{aligned}$$

Note that \(\sigma \le (t-s)^H\) and \(R(s,s)\le R(t,s)\), so it remains to show that the integral is bounded by a constant independent of \(s, t\) and \(a\). It is easy to see that

$$\begin{aligned}&-\frac{y^2}{2\sigma ^2}-\frac{\left[ \frac{R(s,s)}{R(t,s)}(a-y)\right] ^2}{2s^{2H}} + \frac{a^2}{2} \\&= -\frac{1}{2\sigma ^2}\left[ \left( y-a\frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2\right) ^2 + a^2\left( \frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2 - \bar{\sigma }^2 - \frac{R(s,s)^2}{R(t,s)^4}\bar{\sigma }^4\right) \right] , \end{aligned}$$

where

$$\begin{aligned} \frac{1}{\bar{\sigma }^2}=\frac{1}{\sigma ^2} + \frac{R(s,s)}{R(t,s)^2}. \end{aligned}$$

Now

$$\begin{aligned} \frac{1}{\bar{\sigma }^2}\ge 1 \end{aligned}$$

and

$$\begin{aligned} \left( \frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2 - \bar{\sigma }^2 - \frac{R(s,s)^2}{R(t,s)^4}\bar{\sigma }^4\right) \ge 0. \end{aligned}$$

Hence

$$\begin{aligned}&\int \limits _{1}^{\infty } \frac{1}{2\pi }e^{-\frac{y^2}{2\sigma ^2}-\frac{\left[ \frac{R(s,s)}{R(t,s)}(a-y)\right] ^2}{2s^{2H}} + \frac{a^2}{2}}\mathrm d y\\&\le \int \limits _{1}^{\infty } \frac{1}{2\pi }e^{-\frac{1}{2\sigma ^2}\left( y-a\frac{R(s,s)}{R(t,s)^2}\bar{\sigma }^2\right) ^2}\mathrm d y\\&\le \frac{1}{\sqrt{2\pi }}. \end{aligned}$$

Hence for \(I_1\), there exists a constant \(C\) such that

$$\begin{aligned} I_1 \le C e^{-\frac{a^2}{2}} \ \frac{(t-s)^H}{s^H}. \end{aligned}$$

We proceed to study the term \(I_2\). Note that \(\sigma ^2\ge 0\). Hence

$$\begin{aligned} \frac{R(s,s)}{R(t,s)^2}\ge \frac{1}{R(t,t)}\ge 1. \end{aligned}$$

As a consequence, there exists a constantFootnote 1 \(C\) such that

$$\begin{aligned} e^{-\frac{x^2}{2s^{2H}}} \le Ce^{-\frac{\min \{ a^2,(a-1)^2 \} }{2}} \end{aligned}$$

for every \(a\) and every \(x\in \left[ \frac{R(s,s)}{R(t,s)}(a-1),a\right] \). Hence

$$\begin{aligned} I_2&= \int \limits _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \int \limits _{A(x)}^{\infty }\frac{1}{\sqrt{2\pi }}e^{-\frac{y^2}{2}}\mathrm d y \frac{1}{\sqrt{2\pi }s^H}e^{-\frac{x^2}{2s^{2H}}}\mathrm d x\\&\le \frac{1}{\sqrt{2\pi }s^H}e^{-\frac{\min \{ a^2,(a-1)^2 \} }{2}}\int \limits _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \int \limits _{A(x)}^{\infty }\frac{1}{\sqrt{2\pi }}e^{-\frac{y^2}{2}} \frac{1}{\sqrt{2\pi }}\mathrm d y\mathrm d x. \end{aligned}$$

By applying Tonelli’s theorem, the integral can be written as

$$\begin{aligned}&\int \limits _{\frac{R(s,s)}{R(t,s)}(a-1)}^{a} \int \limits _{A(x)}^{\infty }\frac{1}{\sqrt{2\pi }}e^{-\frac{y^2}{2}} \mathrm d y\mathrm d x\\&= \int \limits _{\left[ 1-\frac{R(t,s)}{R(s,s)}\right] \frac{a}{\sigma }}^{\frac{1}{\sigma }}\frac{1}{\sqrt{2\pi }}e^{-\frac{y^2}{2}}\left[ a-\frac{R(s,s)}{R(t,s)}(a-\sigma y)\right] \mathrm d y\\&\quad + \int \limits _{\frac{1}{\sigma }}^{\infty }\frac{1}{\sqrt{2\pi }}e^{-\frac{y^2}{2}}\left[ a-\frac{R(s,s)}{R(t,s)}(a-1)\right] \mathrm d y\\&=: I_{2,1}+I_{2,2}. \end{aligned}$$

For \(I_{2,2}\), by Lemma 4.2, we obtain

$$\begin{aligned} I_{2,2}&\le C\left[ \left( 1-\frac{R(s,s)}{R(t,s)}\right) |a|+\frac{R(s,s)}{R(t,s)}\right] \sigma \\&\le C\max (1,|a|)(t-s)^H. \end{aligned}$$

For \(I_{2,1}\), by applying Lemma 4.3, we obtain

$$\begin{aligned} I_{2,1}&\le C\left( 1-\frac{R(s,s)}{R(t,s)}\right) |a|+C\sigma \\&\le C\max (1,|a|)\frac{(t-s)^H}{s^H}. \end{aligned}$$

Hence, we have the result. To conclude the proof, we note that if

$$\begin{aligned} \frac{R(s,s)}{R(t,s)}(a-1) > a, \end{aligned}$$

then we proceed as for \(I_1\) and obtain the result.\(\square \)

Proof of lemma 3.2

By following the proof of Lemma 3.1, we obtain that for every \(H\ge \frac{1}{2}\)

$$\begin{aligned} \mathbb{P }(B_t >a>B_s) \le I_1 + \frac{1}{\sqrt{2\pi }s^H}e^{-\frac{\min \{ a^2,(a-1)^2 \} }{2}}(I_{2,1}+I_{2,2}). \end{aligned}$$

Moreover, we have

$$\begin{aligned} I_1 \le C e^{-\frac{a^2}{2}} \ \frac{(t-s)^H}{s^H}. \end{aligned}$$

The claim follows using the fact that when \(H=\frac{1}{2}\), we have \(R(s,s)=R(t,s)\) for \(s \le t\). Hence,

$$\begin{aligned} I_{2,1}&\le C\left( 1-\frac{R(s,s)}{R(t,s)}\right) |a|+C\sigma \\&= C\sigma \le C(t-s)^H, \end{aligned}$$

and

$$\begin{aligned} I_{2,2}&\le C\left[ \left( 1-\frac{R(s,s)}{R(t,s)}\right) |a|+\frac{R(s,s)}{R(t,s)}\right] \sigma \\&= C\sigma \le C(t-s)^H. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azmoodeh, E., Viitasaari, L. Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion. J Theor Probab 28, 396–422 (2015). https://doi.org/10.1007/s10959-013-0495-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-013-0495-y

Keywords

Mathematics Subject Classification (2010)

Navigation